Academia.eduAcademia.edu

Outline

Reynolds stress closure in jet flows using wave models

1988, Pennsylvania State Univ. Report

References (37)

  1. Gaster, M., Kit, E. and Wygnanski, I., "Large-scale Structures in a Forced Turbulent Mixing Layer," J. Fluid Mech., 150, 23-39 (1985).
  2. Petersen, R. A. and Samet, M. M., "On the Preferred Mode of Jet Instability," J. Fluid Mech., 194,153-173 (1988).
  3. Tam, C. K. W. and Morris, P. J., "The Radiation of Sound by the Instability Waves of a Compressible Plane Shear Layer," J. Fluid Mech., 98,349-381 (1980).
  4. Tam, C. K. W. and Burton, D. E., "Sound Generated by Instability Waves of Super- sonic Flows. Part 1. Two-dimensional Mixing Layers," J. Fluid Mech., 138,249-271 (1984).
  5. Tam, C. K. W. and Burton, D. E., "Sound Generated by Instability Waves of Super- sonic Flows. Part 2. Axisymmetric Jets," J. Fluid Mech., 138,273-295 (1984).
  6. Tam, C. K. W. and Chen, K. C., "A Statistical Model of Turbulence in Two- dimensional Mixing Layers," J. Fluid Mech., 92,303-326 (1979)
  7. Morris, P. J. and Giridharan, G., "On the Turbulent Mixing of Compressible Free Shear Layer:" (accepted) Proc. Roy. Soc. Lond. (1990) Models for Turbulent Mixing in Compressible Shear Layers," to be published.
  8. Ho, C.-M. and Huang, L.-S., "Subharmonics and Vortex Merging in Mixing Layers,"
  9. J. Fluid Mech., 119,443-473 (1982).
  10. Bridges, T. J. and Morris, P. J., "Differential Eigenvalue Problems in which the Pa- rameter Appears Nonlinearly," J. Comp. Phys., 55(3), 437-460 (1984).
  11. Liou, W. W., "The Computation of Reynolds Stress in an Incompressible Plane Mixing Layer," M.S. Thesis (1986), Department of Aerospace Engineering, Penn State.
  12. Liou, W. W. and Morris, P. J., "A Comparison of Finite Difference and Spectral Solutions of the l_ayleigh Equation of Hydrodynamic Stability," in preparation.
  13. Patel, R. P., "An Experimental Study of a Plane Mixing Layer," AIAA J. 11, 67-71 (1973).
  14. Komori, S. and Ueda, H., "The Large-scale Coherent Structure in the Intermittent Region of the Self-preserving Round Free Jet," J. Fluid Mech., 152_ 337-359 (1985).
  15. Wygnanski, I., Oster, D. and Fiedler, H._ "A Forced, Plane, Turbulent Mixing-layer;
  16. A Challenge for the Predictor," in Turbulent Shear Flows 2, fed. by J. L. S. Bradbury et. al.), 314-326, Springer, Berlin (1979).
  17. Latigo, B., "Large-scale Sturcture Interactions in a Two-dimensional Trubulent Mix- ing Layer," Ph.D. Thesis, University of Southern California, 1979. 16. Launder, B. E., Morse: A._ Rodi, W. and Spalding, D. B., "Prediction of Free Shear Flows; A Comparison of the Performance of Six Turbulence Models, _ NASA SP-g2I, 1972.
  18. Tam, C. K. W. and Morris_ P. J., "The Radiation of Sound by the Instability Waves of a Compressible Plane Turbulent Shear Layer," J. Fluid Mech., 98,349-381 (1980).
  19. Wygnanski, I. J. and Petersen, R. A., "Coherent Motion in Excited Free Shear Flows,"
  20. AIAA J., 25, 201-213 (1987).
  21. Goldstein,M. E. and Leib: S. J., _NonlinearRol}-up of Externally Excited Free Shear Layers,"`J. Fluid Mech., 191,481-515 (1988).
  22. Goldstein, M. E. and Hultgren, L. S., _Nonlinear Spatial Evolution of an Externally Excited Instability Wa', ." in a Free Shear Layer," J. Fluid Mech., 197,295-330 (1988).
  23. Davis, 1_. W. and Moore, E. F., _A Numerical Study of Vortex Merging in Mixing Layers,"`Phys. FLuid_,: 28, pp. 1626-1635. (1985).
  24. Hussain, A. K. M. F. and Zaman, K. 13. M. Q., _An Experimental Stud)' of Organized REFERENCES
  25. WEGMANN, R., "An Iterative Method for Conformal Mapping," Numerical References
  26. P. J. and Miller, D. G., "WavelikeStructures in Elliptic Jets," AIAA Paper 84-0399, 1984. 2Husain, H. S. and Hussain, A. K. hd. F., "Controlled o41/(t/'Z)A 1 ',(_pOlOa tI_om pe._V
  27. REFERENCES GASTER. M., KiT, E. & WYGNANSKI, I. 1985Large scalestructures in a forced turbulent mixing layer, J. Fluid Mech. 150, 23-39.
  28. MORRIS, P. J. 1988 A note on the effect of forward flight on shock spacing in circular jets, J. Sound Vib. 121, 175-177.
  29. MORRIS, P. J., BHAT, T. R. S. & CHEN, G., 1989 A linear shock cell model for jets of arbitrary exit geometry, J. Sound Vib. 1_2, 199-211.
  30. PETERSEN, R. A. & SAMET, M. M. 1988 On the preferred mode of jet instability, J. Fluid Mech. 194, 153-173.
  31. TAM, C. K. W. & BURTON, D. E., 1984bSoundgeneratedby instability wavesof supersonicflows. Part 2. Axisymmetric jets, J. Fluid Mech. 138,273-295.
  32. TAM, C. K. W. & MORRIS, P. J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer, J. Fluid Mech. 98,349-381.
  33. TAM, C. K. W. & SEINER, J. M. 1987 Analysis of twin supersonic plume resonance, A.I.A.A. Paper 87-2695.
  34. TAM, C. K. W., SEINER, J. M., & YU, J. C. 1986 Proposed relationship between broadband shock associated noise and screech tones, J. Sound Vib. 110, 309-321.
  35. TAM, C. K. W. & TANNA, H. K. 1982 Shock associated noise of supersonic jets from convergent-divergent nozzles, J. Sound Vib. 81,337-358.
  36. TRANTER, C. J. 1968 Bessel Functions with Some Physical Applications, English Universities Press, Sec. 2.6.
  37. WLEZIAN, R. W. 1987 Nozzle geometry effects on supersonic jet interaction, A.LA.A. Paper 87-2694.