Academia.eduAcademia.edu

Outline

The protective effect of DMT against neurodegeneration

2025, International Review of Neurobiology - book series

https://doi.org/10.1016/BS.IRN.2025.04.010

Abstract

This paper explores the therapeutic potential of DMT in neuroprotective strategies, particularly concerning ischemia-reperfusion injury (IRI) and neurodegenerative disorders. Besides its potent serotonin receptor actions, DMT is also an endogenous agonist of the sigma-1 receptor (Sig-1R). Sigma receptors are a unique family of proteins with high expression in the brain and spinal cord and have been involved in the etiology, symptom course and treatment of several central nervous system disorders. Our previous theoretical and experimental work strongly suggest that targeting sigma (and serotonin) receptors via DMT may be particularly useful for treatment in a number of neurological conditions like stroke, global brain ischemia, Alzheimer's disease, and amyotrophic lateral sclerosis. In this article, we briefly overview the function of Sig1-R in cellular bioenergetics with a focus on the processes International Review of Neurobiology

References (98)

  1. Aggarwal, S., Mannam, P., & Zhang, J. (2016). Differential regulation of autophagy and mitophagy in pulmonary diseases. American Journal of Physiology: Lung Cellular and Molecular Physiology, 311(2), L433-L452. https://doi.org/10.1152/ajplung.00128.2016.
  2. Al-Saif, A., Al-Mohanna, F., & Bohlega, S. (2011). A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Annals of Neurology, 70(6), 913-919. https://doi. org/10.1002/ana.22534.
  3. Aleksandrova, L. R., & Phillips, A. G. (2021). Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends in Pharmacological Sciences, 42(11), 929-942. https://doi.org/10.1016/j.tips.2021.08.003.
  4. Barker, S. A., McIlhenny, E. H., & Strassman, R. (2012). A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955-2010. Drug Testing and Analysis, 4(7-8), 617-635. https://doi.org/10.1002/dta.422.
  5. Behensky, A. A., Yasny, I. E., Shuster, A. M., Seredenin, S. B., Petrov, A. V., & Cuevas, J. (2013). Afobazole activation of sigma-1 receptors modulates neuronal responses to amyloid-beta25-35. Journal of Pharmacology and Experimental Therapeutics, 347(2), 468-477. https://doi.org/10.1124/jpet.113.208330.
  6. Bockaert, J., Claeysen, S., Becamel, C., Dumuis, A., & Marin, P. (2006). Neuronal 5-HT metabotropic receptors: Fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell and Tissue Research, 326(2), 553-572. https://doi.org/10.1007/s00441- 006-0286-1.
  7. Bogenschutz, M. P., Forcehimes, A. A., Pommy, J. A., Wilcox, C. E., Barbosa, P. C., & Strassman, R. J. (2015). Psilocybin-assisted treatment for alcohol dependence: A proof- of-concept study. Journal of Psychopharmacology (Oxford, England), 29(3), 289-299. https://doi.org/10.1177/0269881114565144.
  8. Chaudhari, N., Talwar, P., Parimisetty, A., Lefebvre d'Hellencourt, C., & Ravanan, P. (2014). A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Frontiers in Cellular Neuroscience, 8, 213. https://doi.org/10.3389/fncel.2014.00213.
  9. Cheng, D., Lei, Z. G., Chu, K., Lam, O. J. H., Chiang, C. Y., & Zhang, Z. J. (2024). N,N- Dimethyltryptamine, a natural hallucinogen, ameliorates Alzheimer's disease by restoring neuronal sigma-1 receptor-mediated endoplasmic reticulum-mitochondria crosstalk. Alzheimer's Research & Therapy, 16(1), 95. https://doi.org/10.1186/s13195-024-01462-3.
  10. Christian, S. T., Harrison, R., Quayle, E., Pagel, J., & Monti, J. (1977). The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent. Biochemical Medicine, 18(2), 164-183. https://doi.org/10.1016/0006-2944(77)90088-6.
  11. Crouzier, L., Denus, M., Richard, E. M., Tavernier, A., Diez, C., Cubedo, N., et al. (2021). Sigma-1 receptor Is critical for mitochondrial activity and unfolded protein response in larval zebrafish. International Journal of Molecular Sciences, 22(20), 11049. https://doi.org/10.3390/ijms222011049.
  12. Dakic, V., Minardi Nascimento, J., Costa Sartore, R., Maciel, R. M., de Araujo, D. B., Ribeiro, S., et al. (2017). Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Scientific Reports, 7(1), 12863. https://doi.org/10. 1038/s41598-017-12779-5.
  13. Dean, J. G., Liu, T., Huff, S., Sheler, B., Barker, S. A., Strassman, R. J., et al. (2019). Biosynthesis and extracellular concentrations of N,N-dimethyltryptamine (DMT) in mammalian brain. Scientific Reports, 9(1), 9333. https://doi.org/10.1038/s41598-019- 45812-w.
  14. De Gregorio, D., Popic, J., Enns, J. P., Inserra, A., Skalecka, A., Markopoulos, A., et al. (2021). Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proceedings of the National Academy of Sciences, USA, 118(5), e2020705118. https://doi.org/10.1073/pnas.2020705118.
  15. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion: From mechanism to translation. Nature Medicine, 17(11), 1391-1401. https://doi.org/10.1038/nm.2507.
  16. Feher, A., Juhasz, A., Laszlo, A., Kalman, J., Jr., Pakaski, M., Kalman, J., & Janka, Z. (2012). Association between a variant of the sigma-1 receptor gene and Alzheimer's disease. Neuroscience Letters, 517(2), 136-139. https://doi.org/10.1016/j.neulet.2012.04.046.
  17. Fisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D. A., Bar-Ner, N., Natan, N., et al. (2016). AF710B, a novel M1/sigma1 agonist with therapeutic efficacy in animal models of Alzheimer's disease. Neuro-degenerative Diseases, 16(1-2), 95-110. https://doi.org/10. 1159/000440864.
  18. Fontanilla, D., Johannessen, M., Hajipour, A. R., Cozzi, N. V., Jackson, M. B., & Ruoho, A. E. (2009). The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science (New York, N. Y.), 323(5916), 934-937. https://doi. org/10.1126/science.1166127.
  19. Frecska, E., Szabo, A., Winkelman, M. J., Luna, L. E., & McKenna, D. J. (2013). A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. Journal of Neural Transmission, 120(9), 1295-1303. https://doi.org/10. 1007/s00702-013-1024-y.
  20. Fukunaga, K. (2014). Orphan receptor and chaperon functions of sigma-1 receptor. Folia pharmacologica Japonica, 143(5), 263-264. https://doi.org/10.1254/fpj.143.263.
  21. Fukunaga, K., Shinoda, Y., & Tagashira, H. (2015). The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. Journal of Pharmacological Sciences, 127(1), 36-41. https://doi.org/10.1016/j.jphs.2014.12.012.
  22. Gable, R. S. (2007). Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction (Abingdon, England), 102(1), 24-34. https://doi.org/10. 1111/j.1360-0443.2006.01652.x.
  23. Hayashi, T. (2019). The sigma-1 receptor in cellular stress signaling. Frontiers in Neuroscience, 13, 733. https://doi.org/10.3389/fnins.2019.00733.
  24. Hayashi, T., & Su, T. P. (2004). Sigma-1 receptor ligands: Potential in the treatment of neuropsychiatric disorders. CNS Drugs, 18(5), 269-284. https://doi.org/10.2165/ 00023210-200418050-00001.
  25. Hayashi, T., & Su, T. P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 131(3), 596-610. https://doi. org/10.1016/j.cell.2007.08.036.
  26. Hetz, C., & Mollereau, B. (2014). Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nature Reviews. Neuroscience, 15(4), 233-249. https://doi. org/10.1038/nrn3689.
  27. Hiramatsu, N., Chiang, W. C., Kurt, T. D., Sigurdson, C. J., & Lin, J. H. (2015). Multiple mechanisms of unfolded protein response-induced cell death. American Journal of Pathology, 185(7), 1800-1808. https://doi.org/10.1016/j.ajpath.2015.03.009.
  28. Hollister, L. E. (1977). Some general thoughts about endogenous psychotogens. In In. E. Usdin, D. A. Hamburg, & J. D. Barchas (Eds.). Neuroregulators and psychiatric disorders (pp. 550-556). Oxford University Press.
  29. Hosszu, A., Antal, Z., Lenart, L., Hodrea, J., Koszegi, S., Balogh, D. B., et al. (2017). Sigma1- receptor agonism protects against renal ischemia-reperfusion injury. Journal of the American Society of Nephrology, 28(1), 152-165. https://doi.org/10.1681/ASN.2015070772.
  30. Inserra, A., De Gregorio, D., & Gobbi, G. (2021). Psychedelics in psychiatry: Neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacological Reviews, 73(1), 202-277. https://doi.org/10.1124/pharmrev.120.000056.
  31. Jarrott, B., & Williams, S. J. (2016). Chronic brain inflammation: The neurochemical basis for drugs to reduce inflammation. Neurochemical Research, 41(3), 523-533. https://doi. org/10.1007/s11064-015-1661-7.
  32. Jin, M., Liu, X., & Klionsky, D. J. (2013). SnapShot: selective autophagy. Cell, 152(1-2), 368.e2. https://doi.org/10.1016/j.cell.2013.01.004.
  33. Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia- reperfusion injury. International Review of Cell and Molecular Biology, 298, 229-317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7.
  34. Lahmy, V., Long, R., Morin, D., Villard, V., & Maurice, T. (2015). Mitochondrial pro- tection by the mixed muscarinic/sigma1 ligand ANAVEX2-73, a tetrahydrofuran deri- vative, in Abeta25-35 peptide-injected mice, a nontransgenic Alzheimer's disease model. Frontiers in Cellular Neuroscience, 8, 463. https://doi.org/10.3389/fncel.2014.00463.
  35. Lahmy, V., Meunier, J., Malmstrom, S., Naert, G., Givalois, L., Kim, S. H., et al. (2013). Blockade of Tau hyperphosphorylation and Abeta(1)(-)(4)(2) generation by the amino- tetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma-1 receptor agonist, in a nontransgenic mouse model of Alzheimer's disease. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(9), 1706-1723. https://doi.org/10.1038/npp.2013.70.
  36. Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., et al. (2018). Psychedelics promote structural and functional neural plasticity. Cell Reports, 23(11), 3170-3182. https://doi.org/10.1016/j.celrep.2018.05.022.
  37. Mancuso, R., Olivan, S., Rando, A., Casas, C., Osta, R., & Navarro, X. (2012). Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 9(4), 814-826. https://doi.org/10.1007/s13311-012-0140-y.
  38. Marrazzo, A., Caraci, F., Salinaro, E. T., Su, T. S., Copani, A., & Ronsisvalle, G. (2005). Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport, 16(11), 1223-1226. https://doi.org/10.1097/00001756-200508010-00018.
  39. Maurice, T. (2016). Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behavioural Brain Research, 296, 270-278. https://doi.org/10.1016/j.bbr.2015.09.020.
  40. Maurice, T., & Goguadze, N. (2017). Sigma-1 receptor in memory and neurodegenerative diseases. Handbook of Experimental Pharmacology, 244, 81-108. https://doi.org/10.1007/ 164_2017_15.
  41. Maurice, T., Su, T. P., & Privat, A. (1998). Sigma-1 receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience, 83(2), 413-428. https://doi.org/10.1016/s0306-4522(97)00405-3.
  42. Mavlyutov, T. A., Epstein, M. L., Liu, P., Verbny, Y. I., Ziskind-Conhaim, L., & Ruoho, A. E. (2012). Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N-dimethyltryptamine forming enzyme, indole-N-methyl transferase. Neuroscience, 206, 60-68. https://doi.org/10.1016/j.neuroscience.2011.12.040.
  43. Mavlyutov, T. A., Guo, L. W., Epstein, M. L., & Ruoho, A. E. (2015). Role of the sigma-1 receptor in amyotrophic lateral sclerosis (ALS). Journal of Pharmacological Sciences, 127(1), 10-16. https://doi.org/10.1016/j.jphs.2014.12.013.
  44. Meunier, J., Ieni, J., & Maurice, T. (2006). The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. British Journal of Pharmacology, 149(8), 998-1012. https://doi.org/10.1038/sj.bjp.0706927.
  45. Mishina, M., Ohyama, M., Ishii, K., Kitamura, S., Kimura, Y., Oda, K., et al. (2008). Low density of sigma-1 receptors in early Alzheimer's disease. Annals of Nuclear Medicine, 22(3), 151-156. https://doi.org/10.1007/s12149-007-0094-z.
  46. Mizuma, A., & Yenari, M. A. (2017). Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Frontiers in Neurology, 8, 467. https://doi.org/10.3389/ fneur.2017.00467.
  47. Moebius, F. F., Reiter, R. J., Hanner, M., & Glossmann, H. (1997). High affinity of sigma1-binding sites for sterol isomerization inhibitors: Evidence for a pharmacological relationship with the yeast sterol C8 ± C7 isomerase. British Journal of Pharmacology, 121(1), 1-6. https://doi.org/10.1038/sj.bjp.0701079.
  48. Nardai, S., Laszlo, M., Szabo, A., Alpar, A., Hanics, J., Zahola, P., et al. (2020). N,N- dimethyltryptamine reduces infarct size and improves functional recovery following transient focal brain ischemia in rats. Experimental Neurology, 327, 113245. https://doi. org/10.1016/j.expneurol.2020.113245.
  49. Nguyen, L., Lucke-Wold, B. P., Mookerjee, S. A., Cavendish, J. Z., Robson, M. J., Scandinaro, A. L., & Matsumoto, R. R. (2015). Role of sigma-1 receptors in neuro- degenerative diseases. Journal of Pharmacological Sciences, 127(1), 17-29. https://doi.org/ 10.1016/j.jphs.2014.12.005.
  50. Nichols, D. E. (2016). Psychedelics. Pharmacological Reviews, 68(2), 264-355. https://doi. org/10.1124/pr.115.011478.
  51. Omi, T., Tanimukai, H., Kanayama, D., Sakagami, Y., Tagami, S., Okochi, M., et al. (2014). Fluvoxamine alleviates ER stress via induction of sigma-1 receptor. Cell Death & Disease, 5(7), e1332. https://doi.org/10.1038/cddis.2014.301.
  52. Ono, Y., Tanaka, H., Takata, M., Nagahara, Y., Noda, Y., Tsuruma, K., et al. (2014). SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in vitro and in vivo amyotrophic lateral sclerosis models. Neuroscience Letters, 559, 174-178. https://doi. org/10.1016/j.neulet.2013.12.005.
  53. Pabba, M. (2013). The essential roles of protein-protein interaction in sigma-1 receptor func- tions. Frontiers in Cellular Neuroscience, 7, 50. https://doi.org/10.3389/fncel.2013.00050.
  54. Pal, A., Fontanilla, D., Gopalakrishnan, A., Chae, Y. K., Markley, J. L., & Ruoho, A. E. (2012). The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. European Journal of Pharmacology, 682(1-3), 12-20. https://doi.org/10.1016/j.ejphar.2012.01.030.
  55. Penke, B., Fulop, L., Szucs, M., & Frecska, E. (2018). The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Current Neuropharmacology, 16(1), 97-116. https://doi.org/10.2174/1570159X15666170529104323.
  56. Peviani, M., Salvaneschi, E., Bontempi, L., Petese, A., Manzo, A., Rossi, D., et al. (2014). Neuroprotective effects of the sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiology of Disease, 62, 218-232. https://doi.org/10.1016/j.nbd.2013.10.010.
  57. Prause, J., Goswami, A., Katona, I., Roos, A., Schnizler, M., Bushuven, E., et al. (2013). Altered localization, abnormal modification and loss of function of sigma receptor-1 in amyotrophic lateral sclerosis. Human Molecular Genetics, 22(8), 1581-1600. https://doi. org/10.1093/hmg/ddt008.
  58. Ramakrishnan, N. K., Visser, A. K., Rybczynska, A. A., Nyakas, C. J., Luiten, P. G., Kwizera, C., et al. (2016). Sigma-1 agonist binding in the aging rat brain: A microPET study with [(11)C]SA4503. Molecular Imaging and Biology: MIB: the Official Publication of the Academy of Molecular Imaging, 18(4), 588-597. https://doi.org/10.1007/s11307-015-0917-6.
  59. Ray, T. S. (2010). Psychedelics and the human receptorome. PLoS ONE, 5(2), e9019. https://doi.org/10.1371/journal.pone.0009019.
  60. Remondelli, P., & Renna, M. (2017). The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Frontiers in Molecular Neuroscience, 10, 187. https://doi.org/10.3389/fnmol.2017.00187.
  61. Ruoho, A. E., Chu, U. B., Ramachandran, S., Fontanilla, D., Mavlyutov, T., & Hajipour, A. R. (2012). The ligand binding region of the sigma-1 receptor: Studies utilizing photoaffinity probes, sphingosine and N-alkylamines. Current Pharmaceutical Design, 18(7), 920-929. https://doi.org/10.2174/138161212799436584.
  62. Ruscher, K., & Wieloch, T. (2015). The involvement of the sigma-1 receptor in neuro- degeneration and neurorestoration. Journal of Pharmacological Sciences, 127(1), 30-35. https://doi.org/10.1016/j.jphs.2014.11.011.
  63. Sabino, V., Cottone, P., Zhao, Y., Iyer, M. R., Steardo, L., Jr., Steardo, L., et al. (2009). The sigma-receptor antagonist BD-1063 decreases ethanol intake and reinforcement in animal models of excessive drinking. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(6), 1482-1493. https://doi.org/10.1038/ npp.2008.192.
  64. Safra, M., Ben-Hamo, S., Kenyon, C., & Henis-Korenblit, S. (2013). The ire-1 ER stress- response pathway is required for normal secretory-protein metabolism in C. elegans. Journal of Cell Science, 126(Pt 18), 4136-4146. https://doi.org/10.1242/jcs.123000.
  65. Salvan, P., Fonseca, M., Winkler, A. M., Beauchamp, A., Lerch, J. P., & Johansen-Berg, H. (2023). Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nature Neuroscience, 26(1), 53-63. https://doi.org/10.1038/s41593- 022-01213-3.
  66. Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86, 715-748. https://doi.org/10.1146/annurev-biochem-061516-045037.
  67. Sinha, J. K., Trisal, A., Ghosh, S., Gupta, S., Singh, K. K., Han, S. S., et al. (2024). Psychedelics for Alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Research Reviews, 96, 102211. https://doi.org/10.1016/j.arr.2024.102211.
  68. Sovolyova, N., Healy, S., Samali, A., & Logue, S. E. (2014). Stressed to death: Mechanisms of ER stress-induced cell death. Biological Chemistry, 395(1), 1-13. https://doi.org/10. 1515/hsz-2013-0174.
  69. Strassman, R. J., & Qualls, C. R. (1994a). Dose-response study of N,N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Archives of General Psychiatry, 51(2), 85-97. https://doi.org/10.1001/archpsyc.1994.03950020009001.
  70. Strassman, R. J., & Qualls, C. R. (1994b). Dose-response study of N,N-dimethyl- tryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Archives of General Psychiatry, 51(2), 98-108. https://doi.org/10.1001/archpsyc.1994. 03950020022002.
  71. Su, T. P., Hayashi, T., Maurice, T., Buch, S., & Ruoho, A. E. (2010). The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends in Pharmacological Sciences, 31(12), 557-566. https://doi.org/10.1016/j.tips.2010.08.007.
  72. Su, T. P., Hayashi, T., & Vaupel, D. B. (2009). When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Science Signaling, 2(61), pe12. https://doi.org/10.1126/scisignal.261pe12.
  73. Su, T. P., London, E. D., & Jaffe, J. H. (1988). Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science (New York, N. Y.), 240(4849), 219-221. https://doi.org/10.1126/science.2832949.
  74. Su, T. P., Su, T. C., Nakamura, Y., & Tsai, S. Y. (2016). The sigma-1 receptor as a pluripotent modulator in living systems. Trends in Pharmacological Sciences, 37(4), 262-278. https://doi.org/10.1016/j.tips.2016.01.003.
  75. Svob Strac, D., Pivac, N., & Muck-Seler, D. (2016). The serotonergic system and cognitive function. Translational Neuroscience, 7(1), 35-49. https://doi.org/10.1515/tnsci-2016-0007.
  76. Szabo, A., & Frecska, E. (2016). Dimethyltryptamine (DMT): A biochemical Swiss Army knife in neuroinflammation and neuroprotection? Neural regeneration research, 11(3), 396-397. https://doi.org/10.4103/1673-5374.179041.
  77. Szabo, A., Kovacs, A., Frecska, E., & Rajnavolgyi, E. (2014). Psychedelic N,N-dime- thyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells. PLoS ONE, 9(8), e106533. https://doi.org/10.1371/journal.pone. 0106533. Szabo, A., Kovacs, A., Riba, J., Djurovic, S., Rajnavolgyi, E., & Frecska, E. (2016). The endogenous hallucinogen and trace amine N,N-dimethyltryptamine (DMT) displays potent protective effects against hypoxia via sigma-1 receptor activation in human primary iPSC-derived cortical neurons and microglia-like immune cells. Frontiers in Neuroscience, 10, 423. https://doi.org/10.3389/fnins.2016.00423.
  78. Szabo, I., Varga, V. E., Dvoracsko, S., Farkas, A. E., Kormoczi, T., Berkecz, R., et al. (2021). N,N-Dimethyltryptamine attenuates spreading depolarization and restrains neurodegeneration by sigma-1 receptor activation in the ischemic rat brain. Neuropharmacology, 192, 108612. https://doi.org/10.1016/j.neuropharm.2021.108612.
  79. Tagashira, H., Zhang, C., Lu, Y. M., Hasegawa, H., Kanai, H., Han, F., & Fukunaga, K. (2013). Stimulationof sigma1-receptor restores abnormal mitochondrial Ca(2)(+) mobilization and ATP production following cardiac hypertrophy. Biochimica et Biophysica Acta, 1830(4), 3082-3094. https://doi.org/10.1016/j.bbagen.2012.12.029.
  80. Teter, B., & Ashford, J. W. (2002). Neuroplasticity in Alzheimer's disease. Journal of Neuroscience Research, 70(3), 402-437. https://doi.org/10.1002/jnr.10441.
  81. Tsai, S. Y., Chuang, J. Y., Tsai, M. S., Wang, X. F., Xi, Z. X., Hung, J. J., et al. (2015). Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proceedings of the National Academy of Sciences, USA, 112(47), E6562-E6570. https://doi.org/10.1073/pnas.1518894112.
  82. Tsai, S. Y., Pokrass, M. J., Klauer, N. R., De Credico, N. E., & Su, T. P. (2014). Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opinion on Therapeutic Targets, 18(12), 1461-1476. https://doi.org/10.1517/14728222.2014.972939.
  83. Vaidya, V. A., Marek, G. J., Aghajanian, G. K., & Duman, R. S. (1997). 5-HT2A receptor- mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. Journal of Neuroscience, 17(8), 2785-2795. https://doi.org/10.1523/ jneurosci.17-08-02785.1997.
  84. Vann Jones, S. A., & O'Kelly, A. (2020). Psychedelics as a treatment for Alzheimer's disease dementia. Frontiers in Synaptic Neuroscience, 12, 34. https://doi.org/10.3389/ fnsyn.2020.00034.
  85. Villard, V., Espallergues, J., Keller, E., Alkam, T., Nitta, A., Yamada, K., et al. (2009). Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1- 41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(6), 1552-1566. https://doi. org/10.1038/npp.2008.212.
  86. Volgyi, K., Juhász, G., Kovacs, Z., & Penke, B. (2015). Dysfunction of endoplasmic reticulum (ER) and mitochondria (MT) in Alzheimer's disease: The role of the ER-MT cross-talk. Current Alzheimer Research, 12(7), 655-672. https://doi.org/10.2174/ 1567205012666150710095035.
  87. Wang, J., Shanmugam, A., Markand, S., Zorrilla, E., Ganapathy, V., & Smith, S. B. (2015). Sigma-1 receptor regulates the oxidative stress response in primary retinal Muller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger. Free Radical Biology & Medicine, 86, 25-36. https://doi.org/10.1016/j. freeradbiomed.2015.04.009.
  88. Wang, P., He, Y., Li, D., Han, R., Liu, G., Kong, D., & Hao, J. (2016). Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. Journal of Neuroinflammation, 13(1), 192. https://doi.org/10.1186/s12974-016-0660-1.
  89. Watanabe, S., Ilieva, H., Tamada, H., Nomura, H., Komine, O., Endo, F., et al. (2016). Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1-and SOD1-linked ALS. EMBO Molecular Medicine, 8(12), 1421-1437. https://doi.org/10.15252/emmm.201606403.
  90. Weng, T. Y., Tsai, S. A., & Su, T. P. (2017). Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. Journal of Biomedical Science, 24(1), 74. https://doi.org/10.1186/s12929-017-0380-6.
  91. Winkelman, M. J., Szabo, A., & Frecska, E. (2023). The potential of psychedelics for the treatment of Alzheimer's disease and related dementias. European Neuropsychopharmacology, 76, 3-16. https://doi.org/10.1016/j.euroneuro.2023.07.003.
  92. Winstock, A. R., Kaar, S., & Borschmann, R. (2014). Dimethyltryptamine (DMT): Prevalence, user characteristics and abuse liability in a large global sample. Journal of Psychopharmacology (Oxford, England), 28(1), 49-54. https://doi.org/10.1177/0269881113513852.
  93. Yabuki, Y., Shinoda, Y., Izumi, H., Ikuno, T., Shioda, N., & Fukunaga, K. (2015). Dehydroepiandrosterone administration improves memory deficits following transient brain ischemia through sigma-1 receptor stimulation. Brain Research, 1622, 102-113. https://doi.org/10.1016/j.brainres.2015.05.006.
  94. Zhang, G., & Stackman, R. W., Jr. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Frontiers in Pharmacology, 6, 225. https://doi.org/10.3389/fphar. 2015.00225.
  95. Zhang, M., Liu, Q., Meng, H., Duan, H., Liu, X., Wu, J., et al. (2024). Ischemia-reper- fusion injury: Molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 9(1), 12. https://doi.org/10.1038/s41392-023-01688-x.
  96. Zhao, Q., Yu, S., Ling, Y., Hao, S., & Liu, J. (2021). The protective effects of dexme- detomidine against hypoxia/reoxygenation-induced inflammatory injury and perme- ability in brain endothelial cells mediated by sigma-1 receptor. ACS Chemical Neuroscience, 12(11), 1940-1947. https://doi.org/10.1021/acschemneuro.1c00032.
  97. Zhao, X., Zhu, L., Liu, D., Chi, T., Ji, X., Liu, P., et al. (2019). Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/ reperfusion injury. Apoptosis: an International Journal on Programmed Cell Death, 24(1-2), 157-167. https://doi.org/10.1007/s10495-018-1495-2.
  98. Zimmerman, B. J., & Granger, D. N. (1994). Mechanisms of reperfusion injury. American Journal of the Medical Sciences, 307(4), 284-292. https://doi.org/10.1097/00000441- 199404000-00009.