Academia.eduAcademia.edu

Outline

ATPase activity of DFCP1 controls selective autophagy

2022, Research Square (Research Square)

https://doi.org/10.21203/RS.3.RS-1322004/V1

Abstract

Cellular homeostasis is governed by removal of damaged organelles and protein aggregates by selective autophagy mediated by cargo adaptors such as p62/SQSTM1. Autophagosomes can assemble in specialized cup-shaped regions of the endoplasmic reticulum (ER) known as omegasomes, which are characterized by the presence of the ER protein DFCP1/ZFYVE1. The function of DFCP1 is unknown, as are the mechanisms of omegasome formation and constriction. Here, we demonstrate that DFCP1 is an ATPase that dimerizes in an ATP-dependent fashion. Whereas depletion of DFCP1 had a minor effect on bulk autophagic ux, DFCP1 was required to maintain the autophagic ux of p62 under both fed and starved conditions, and this was dependent on its ability to bind and hydrolyse ATP. While DFCP1 mutants defective in ATP binding or hydrolysis localized to forming omegasomes, these omegasomes failed to constrict. Consequently, the release of nascent autophagosomes from omegasomes was markedly delayed. DFCP1 was found to associate with ubiquitinated proteins, and degradation of ubiquitinated cargoes such as protein aggregates, mitochondria and micronuclei was strongly inhibited when DFCP1 was knocked out or mutated. Thus, DFCP1 mediates ATPase-driven constriction of omegasomes to release autophagosomes for selective autophagy.

References (47)

  1. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res 24, 9-23, doi:10.1038/cr.2013.169 (2014).
  2. Matsunaga, K. et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190, 511-521, doi:10.1083/jcb.200911141 (2010).
  3. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393, doi:10.1038/nature11910 (2013).
  4. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685-701, doi:10.1083/jcb.200803137 (2008).
  5. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11, 1433-1437, doi:10.1038/ncb1991 (2009).
  6. Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180-1185, doi:10.4161/auto.5.8.10274 (2009).
  7. Zhao, Y. G. et al. The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation. Mol Cell 67, 974-989 e976, doi:10.1016/j.molcel.2017.08.005 (2017).
  8. Proikas-Cezanne, T., Takacs, Z., Donnes, P. & Kohlbacher, O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128, 207-217, doi:10.1242/jcs.146258 (2015).
  9. Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522, doi:10.4161/auto.6.4.11863 (2010).
  10. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 238-252, doi:10.1016/j.molcel.2014.05.021 (2014).
  11. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
  12. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845-858, doi:10.1038/nprot.2015.053 (2015).
  13. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951 (1982).
  14. Daumke, O. & Praefcke, G. J. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers 105, 580-593, doi:10.1002/bip.22855 (2016).
  15. Karanasios, E. et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci 126, 5224-5238, doi:10.1242/jcs.132415 (2013).
  16. Koyama-Honda, I., Itakura, E., Fujiwara, T. K. & Mizushima, N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9, 1491-1499, doi:10.4161/auto.25529 (2013).
  17. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776, doi:10.4161/auto.6.6.12709 (2010).
  18. Itakura, E. & Mizushima, N. p62 Targeting to the autophagosome formation site requires self- oligomerization but not LC3 binding. J Cell Biol 192, 17-27, doi:10.1083/jcb.201009067 (2011).
  19. An, H. & Harper, J. W. Systematic analysis of ribophagy in human cells reveals bystander ux during selective autophagy. Nat Cell Biol 20, 135-143, doi:10.1038/s41556-017-0007-x (2018).
  20. Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18, 1042-1052, doi:10.1016/j.chembiol.2011.05.013 (2011).
  21. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614, doi:10.1083/jcb.200507002 (2005).
  22. Zhong, Z. et al. NF-kappaB Restricts In ammasome Activation via Elimination of Damaged Mitochondria. Cell 164, 896-910, doi:10.1016/j.cell.2015.12.057 (2016).
  23. Abudu, Y. P. et al. SAMM50 acts with p62 in piecemeal basal-and OXPHOS-induced mitophagy of SAM and MICOS components. J Cell Biol 220, doi:10.1083/jcb.202009092 (2021).
  24. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145, doi:10.1074/jbc.M702824200 (2007).
  25. Allen, G. F., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14, 1127-1135, doi:10.1038/embor.2013.168 (2013).
  26. Engedal, N. et al. Measuring Autophagic Cargo Flux with Keima-Based Probes. Methods Mol Biol 2445, 99-115, doi:10.1007/978-1-0716-2071-7_7 (2022).
  27. Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449, 923-927, doi:10.1038/nature06173 (2007).
  28. Schulte, K. et al. The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion. BMC Biol 14, 14, doi:10.1186/s12915-016-0236-7 (2016).
  29. Pawlowski, N. Complex Formation and the GTP Hydrolysis Mechanism of the Immunity-Related GTPase Irga6 PhD thesis, Universität zu Köln, (2009).
  30. Antonny, B. et al. Membrane ssion by dynamin: what we know and what we need to know. EMBO J 35, 2270-2284, doi:10.15252/embj.201694613 (2016).
  31. Li, J. & Hochstrasser, M. Microautophagy regulates proteasome homeostasis. Curr Genet 66, 683- 687, doi:10.1007/s00294-020-01059-x (2020).
  32. Joachim, J. et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol 27, 2123-2136 e2127, doi:10.1016/j.cub.2017.06.021 (2017).
  33. Holdgaard, S. G. et al. Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nat Commun 10, 4176, doi:10.1038/s41467-019-12094-9 (2019).
  34. Kojima, W. et al. Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy. Autophagy 17, 2011-2036, doi:10.1080/15548627.2021.1874133 (2021).
  35. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4, 394-398, doi:10.1038/ncb791 (2002).
  36. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8, 163- 169, doi:10.1038/ncb1354 (2006).
  37. Twu, W. I. et al. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Rep 110049, doi:10.1016/j.celrep.2021.110049 (2021).
  38. Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 16, 826-841, doi:10.1080/15548627.2019.1639301 (2020).
  39. Agudo-Canalejo, J. et al. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591, 142-146, doi:10.1038/s41586-020-2992-3 (2021).
  40. Stang, E. et al. Cbl-dependent ubiquitination is required for progression of EGF receptors into clathrin- coated pits. Mol Biol Cell 15, 3591-3604, doi:10.1091/mbc.e04-01-0041 (2004).
  41. Prakash, B., Renault, L., Praefcke, G. J., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J 19, 4555-4564, doi:10.1093/emboj/19.17.4555 (2000).
  42. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 1605-1612, doi:10.1002/jcc.20084 (2004).
  43. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41, 207-234, doi:10.1016/j.pep.2005.01.016 (2005).
  44. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4, e6529, doi:10.1371/journal.pone.0006529 (2009).
  45. Xi, L., Schmidt, J. C., Zaug, A. J., Ascarrunz, D. R. & Cech, T. R. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol 16, 231, doi:10.1186/s13059-015-0791-1 (2015).
  46. Violot, S., Carpentier, P., Blanchoin, L. & Bourgeois, D. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red uorescent protein mKeima. J Am Chem Soc 131, 10356-10357, doi:10.1021/ja903695n (2009).
  47. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676- 682, doi:10.1038/nmeth.2019 (2012).