Academia.eduAcademia.edu

Outline

Spectral analysis of 2D outlier layout

2021, Journal of Spectral Theory

https://doi.org/10.4171/JST/358

Abstract

Thompson's partition of a cyclic subnormal operator into normal and completely non-normal components is combined with a noncommutative calculus for hyponormal operators for separating outliers from the cloud, in rather general point distributions in the plane. The main result provides exact transformation formulas from the power moments of the prescribed point distribution into the moments of the uniform mass carried by the cloud. The proposed algorithm solely depends on the Hessenberg matrix associated to the original data. The robustness of the algorithm is reflected by the insensitivity of the output under trace class, or by a theorem of Voiculescu, under certain Hilbert-Schmidt class, additive perturbations of the Hessenberg matrix.

References (42)

  1. John R. Akeroyd. Density of the polynomials in Hardy and Bergman spaces of slit domains. Ark. Mat., 49(1):1-16, 2011.
  2. Alexandru Aleman, Stefan Richter, and Carl Sundberg. Nontangential limits in P t (µ)-spaces and the index of invariant subspaces. Ann. of Math. (2), 169(2):449-490, 2009.
  3. Serban T. Belinschi, Hari Bercovici, Mireille Capitaine, and Maxime Février. Out- liers in the spectrum of large deformed unitarily invariant models. Ann. Probab., 45(6A):3571-3625, 2017.
  4. C. A. Berger and B. I. Shaw. Selfcommutators of multicyclic hyponormal operators are always trace class. Bull. Amer. Math. Soc., 79:1193-1199, (1974), 1973.
  5. Charles A. Berger. Intertwined operators and the Pincus principal function. Integral Equations Operator Theory, 4(1):1-9, 1981.
  6. Beckermann Bernd, Edward Saff, Mihai Putinar, and Nikos Stylianopoulos. Pertur- bation of Christoffel-Darboux kernels 1: Detection of outliers. ArXiv, (1812.06560), 2018.
  7. T. Bloom and N. Levenberg. Asymptotics for Christoffel functions of planar measures. J. Anal. Math., 106:353-371, 2008.
  8. L. Bos, B. Della Vecchia, and G. Mastroianni. On the asymptotics of Christoffel functions for centrally symmetric weight functions on the ball in R d . In Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, Vol. I (Acquafredda di Maratea, 1996), number 52, Vol. I, pages 277-290, 1998.
  9. James E. Brennan. Approximation in the mean by polynomials on non-Carathéodory domains. Ark. Mat., 15(1):117-168, 1977.
  10. James E. Brennan. Point evaluations, invariant subspaces and approximation in the mean by polynomials. J. Functional Analysis, 34(3):407-420, 1979.
  11. Richard W. Carey and Joel D. Pincus. An integrality theorem for subnormal opera- tors. Integral Equations Operator Theory, 4(1):10-44, 1981.
  12. John B. Conway. The theory of subnormal operators, volume 36 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1991.
  13. Björn Gustafsson, Chiyu He, Peyman Milanfar, and Mihai Putinar. Reconstructing planar domains from their moments. Inverse Problems, 16(4):1053-1070, 2000.
  14. Björn Gustafsson and Mihai Putinar. Hyponormal quantization of planar domains, volume 2199 of Lecture Notes in Mathematics. Springer, Cham, 2017. Exponential transform in dimension two.
  15. Björn Gustafsson, Mihai Putinar, Edward B. Saff, and Nikos Stylianopoulos. Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math., 222(4):1405-1460, 2009.
  16. Björn Gustafsson and Harold S. Shapiro. What is a quadrature domain? In Quadra- ture domains and their applications, volume 156 of Oper. Theory Adv. Appl., pages 1-25. Birkhäuser, Basel, 2005.
  17. D. M. Hawkins. Identification of outliers. Chapman & Hall, London-New York, 1980. Monographs on Applied Probability and Statistics.
  18. Lars Inge Hedberg. Weighted mean approximation in Carathéodory regions. Math. Scand., 23:113-122 (1969), 1968.
  19. J. William Helton and Roger E. Howe. Traces of commutators of integral operators. Acta Math., 135(3-4):271-305, 1975.
  20. Lasserre Jean-Bernard, Pauwels Edouard, and Mihai Putinar. Data analysis from empirical moments and the Christoffel function. ArXiv, (1810.08480), 2018.
  21. Thomas Kriete. On the structure of certain H 2 (µ) spaces. Indiana Univ. Math. J., 28(5):757-773, 1979.
  22. A. Kroó and D. S. Lubinsky. Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Canad. J. Math., 65(3):600-620, 2013.
  23. A. Kroó and D. S. Lubinsky. Christoffel functions and universality on the boundary of the ball. Acta Math. Hungar., 140(1-2):117-133, 2013.
  24. Jean B. Lasserre and Edouard Pauwels. The empirical Christoffel function with ap- plications in data analysis. Adv. Comput. Math., 45(3):1439-1468, 2019.
  25. Jean Bernard Lasserre and Mihai Putinar. Algebraic-exponential data recovery from moments. Discrete Comput. Geom., 54(4):993-1012, 2015.
  26. N. G. Makarov. Perturbations of normal operators and the stability of the continuous spectrum. Izv. Akad. Nauk SSSR Ser. Mat., 50(6):1178-1203, 1343, 1986.
  27. Mircea Martin and Mihai Putinar. Lectures on hyponormal operators, volume 39 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1989.
  28. Attila Máté, Paul Nevai, and Vilmos Totik. Szegö's extremum problem on the unit circle. Ann. of Math. (2), 134(2):433-453, 1991.
  29. S. N. Mergeljan. On the completeness of systems of analytic functions. Amer. Math. Soc. Transl. (2), 19:109-166, 1962.
  30. Korda Milan, Mezic Igor, and Mihai Putinar. Data-driven spectral analy- sis of the Koopman operator. Applied and Computational Harmonic Analysis, (/doi.org/10.1016/j.acha.2018.08.002), 2018.
  31. Paul Nevai. Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory, 48(1):3-167, 1986.
  32. Joel David Pincus. Commutators and systems of singular integral equations. I. Acta Math., 121:219-249, 1968.
  33. E. B. Saff, H. Stahl, N. Stylianopoulos, and V. Totik. Orthogonal polynomials for area-type measures and image recovery. SIAM J. Math. Anal., 47(3):2442-2463, 2015.
  34. Brian Simanek. Weak convergence of CD kernels: a new approach on the circle and real line. J. Approx. Theory, 164(1):204-209, 2012.
  35. Barry Simon. The Christoffel-Darboux kernel. In Perspectives in partial differential equations, harmonic analysis and applications, volume 79 of Proc. Sympos. Pure Math., pages 295-335. Amer. Math. Soc., Providence, RI, 2008.
  36. Barry Simon. Weak convergence of CD kernels and applications. Duke Math. J., 146(2):305-330, 2009.
  37. James E. Thomson. Approximation in the mean by polynomials. Ann. of Math. (2), 133(3):477-507, 1991.
  38. Vilmos Totik. Asymptotics for Christoffel functions for general measures on the real line. J. Anal. Math., 81:283-303, 2000.
  39. Dan Voiculescu. Some results on norm-ideal perturbations of Hilbert space operators. J. Operator Theory, 2(1):3-37, 1979.
  40. Dan Voiculescu. A note on quasitriangularity and trace-class self-commutators. Acta Sci. Math. (Szeged), 42(1-2):195-199, 1980.
  41. Dan Voiculescu. Remarks on Hilbert-Schmidt perturbations of almost-normal opera- tors. In Topics in modern operator theory (Timişoara/Herculane, 1980), volume 2 of Operator Theory: Adv. Appl., pages 311-318. Birkhäuser, Basel-Boston, Mass., 1981.
  42. Dan Voiculescu. Some results on norm-ideal perturbations of Hilbert space operators. II. J. Operator Theory, 5(1):77-100, 1981. (mputinar@math.ucsb.edu, mihai.putinar@ncl.ac.uk) University of California at Santa Barbara, CA, USA and Newcastle University, Newcastle upon Tyne, UK