Long and short-range air navigation on spherical Earth
2017, International Journal of Aviation, Aeronautics, and Aerospace
https://doi.org/10.15394/IJAAA.2017.1160References (59)
- Abramowitz, M., Stegun, I. A. (1984). Handbook of mathematical functions (abridged edition). Frankfurt (am Main), Germany: Verlag Harri Deutsch.
- Aleksandrov, A. D., Kolmogorov, A. N., & Lavrent'ev, M. A. (1999). Mathematics: Its content, methods and meaning (3 volumes translation from Russian). Mineola, NY: Dover.
- Alexander, J. (2004). Loxodromes: A rhumb way to go, Mathematics Magazine, 77(5), 349-356. DOI: 10.2307/3219199
- Ayres, F., Jr., & Mendelson,E. (2009). Calculus (5th ed.). New York, NY: McGraw-Hill.
- Bate, R.R., Mueller, D. D., & White J. E. (1971). Fundamentals of astrodynamics. New York, NY: Dover.
- Bennett, G. G. (1996). Practical rhumb line calculations on a spheroid. Journal of Navigation, 49(2), 112-119. DOI: 10.1017/s0373463300013151
- Bomford, G. (1983). Geodesy (reprinted 4th ed.). New York, NY: Oxford University Press.
- Bowditch, N. (2002). The American Practical Navigator (2002 bicentennial ed.). Bethesda, MD: National Imagery and Mapping Agency (NIMA).
- Bowring, B. R. (1984). The direct and inverse solutions for the great elliptic line on the reference ellipsoid. Bulletin Géodésique 58(1), 101-108. DOI: 10.1007/BF02521760
- Bradley, A. D. (1942). Mathematics of air and marine navigation with tables. New York, NY: American Book Company.
- Bronstein, I. N., & Semendjajew, K. A. (1989). Taschenbuch der Mathematik (24. Auflage). Frankfurt/Main, Germany: Verlag Harri Deutsch.
- Byrd, P. F., & Friedman, M. D. (1954). Handbook of elliptic integrals for engineers and physicists. Berlin, Germany: Springer Verlag.
- Daidzic, N. E. (2014). Achieving global range in future subsonic and supersonic airplanes. International Journal of Aviation, Aeronautics, and Aerospace (IJAAA), 1(4), 1-29. DOI: 10.15394/ijaaa.2014.1038
- Daidzic, N. E. (2016a). General solution of the wind triangle problem and the critical tailwind angle, The International Journal of Aviation Sciences (IJAS), 1(1), 57-93.
- Daidzic, N. E. (2016b). Estimation of performance airspeeds for high-bypass turbofans equipped transport-category airplanes. Journal of Aviation Technology and Engineering (JATE), 5(2), pp. 27-50. DOI: 10.7771/2159- 6670.1122
- Danby, J. M. A. (1962). Fundamentals of celestial mechanics. New York, NY: MacMillan.
- De Florio, F. (2016). Airworthiness: An introduction to aircraft certification and operations (3rd ed.). Oxford, UK: Butterworth-Heinemann.
- De Remer, D., & McLean, D. W. (1998). Global navigation for pilots (2nd ed.). Newcastle, WA: Aviation Supplies and Academics, Inc.
- Dym, C. L., Shames, I. H. (2013). Solid mechanics: A variational approach (Augmented edition). New York, NY: Springer. DOI: 10.1007/978-1- 4614-6034-3
- Dwight, H. B. (1961). Tables of integrals and other mathematical data (4th ed.). New York, NY: Macmillan.
- Fitzpatrick, R. (2012). An introduction to celestial mechanics. Cambridge, UK: Cambridge University Press.
- Fox, C. (1987). An introduction to the calculus of variation. Mineola, NY: Dover.
- Goetz, A. (1970). Introduction to differential geometry. Reading, MA: Addison- Wesley.
- Greenwood, D. T. (1987). Classical dynamics. New York, NY: Dover.
- Hall, J. E. (1968). Analytic geometry. Belmont, CA: Brooks/Cole Publishing Co.
- Nielsen, K. L., & Vanlonkhuyzen, J. H. (1954). Plane and spherical trigonometry. New York, NY: Barnes & Noble.
- Olza, A., Taillard, F., Vautravers, E., & Diethelm, J. C. (1974). Tables numériques et formulaires. Lausanne, Switzerland: Spes S.A.
- Oprea, J. (2007). Differential geometry and its applications (2nd ed.). Washington, DC: The Mathematical Association of America.
- Phillips, W. F. (2004). Mechanics of flight. New York, NY: John Wiley & Sons.
- Rapp, R. H. (1991). Geometric geodesy: Part I. Columbus, OH: State University.
- Rapp, R. H. (1993). Geometric geodesy: Part II. Columbus, OH: State University.
- Rollins, C. M. (2010). An integral for geodesic length. Survey Review, 42(315), 20-26. DOI: 10.1179/003962609X451663
- Smith, D. R. (1998). Variational methods in optimization. Mineola, NY: Dover.
- Spiegel, M. R., & Liu, J. (1999). Mathematical handbook of formulas and tables (2nd ed.). New York, NY: McGraw-Hill.
- Sinnott, R. W. (1984). Virtues of the haversine. Sky and Telescope. 68(2), 159.
- Sjöberg, L. E. (2012). Solutions to the direct and inverse navigation problems on the great ellipse. Journal of Geodetic Science, 2(3), 200-205. DOI: 10.2478/v1015601100409
- Struik, D. J. (1987). A concise history of mathematics (4th). Mineola, NY: Dover.
- Struik, D. J. (1988). Lectures on classical differential geometry (2nd ed.). Mineola, NY: Dover.
- Tewari, A. (2007). Atmospheric and space flight dynamics: Modeling and simulation with Matlab ® and Simulink ® . Boston, MN: Birkhäuser.
- Tikhonov, A. N., & Samarskii, A. A. (1990). Equations of mathematical physics. Mineola, NY: Dover.
- Todhunter (1886). Spherical trigonometry (5th ed.). London, UK: MacMillan.
- Tooley, M., & Wyatt, D. (2007). Aircraft communications and navigation systems: Principles, maintenance and operation. London, UK: Taylor & Francis.
- Torge, W. (2001). Geodesy (3 rd ed.). Berlin, Germany: Walter de Gruyter, GmbH.
- Tseng, W.-K., & Lee, H.-S. (2010). Navigation on a great ellipse. Journal of marine science and technology, 18(3), 369-375.
- Underdown, R. B., & Palmer, T. (2001). Navigation: ground studies for pilots. 6th ed. Oxford, UK: Blackwell Science, Ltd.
- US Department of Transportation, Federal Aviation Administration. (2008). Extended operations (ETOPS and Polar operations) (Advisory Circular AC 120-42B). Washington, DC: Author.
- Vaníček, P., & Krakiwsky, E. (1986). Geodesy: The concepts (2nd ed.). New York, NY: North-Holland.
- Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176), 88-93. DOI: 10.1179/sre.1975.23.176.88
- Weber, H. J., & Arfken, G. B. (2004). Essential mathematical methods for physicists. Amsterdam, the Netherlands: Elsevier.
- Weintrit, A., & Kopacz, P. (2011). A novel approach to loxodrome (rhumb line), orthodrome (great circle) and geodesic line in ECDIS and navigation in general, Int. J. Marine Nav. and Safety Sea Transp., 5(4), 507-517. DOI: 10.1201/b11344-21.
- Widder, D. V. (1989). Advanced calculus (2nd ed.). New York, NY: Dover.
- Williams, E. (2011). Aviation formulary V1.46. Retrieved from http://williams.best.vwh.net/avform.htm.
- Williams, J. E. D. (1950). Loxodromic distances on the terrestrial spheroid. Journal of Navigation, 3(2), pp. 133-140. DOI: 10.1017/s0373463300045549
- Williams, R. (1996). The great ellipse on the surface of the spheroid. Journal of Navigation, 49(2), 229-234. DOI: 10.1017/s0373463300013333
- Wolper, J. S. (2001). Understanding mathematics for aircraft navigation. New York, NY; McGraw-Hill.
- Wrede, R. C. (1972). Introduction to vector and tensor analysis. New York, NY: Dover. International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2 https://commons.erau.edu/ijaaa/vol4/iss1/2 DOI: https://doi.org/10.15394/ijaaa.2017.1160 International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2 https://commons.erau.edu/ijaaa/vol4/iss1/2 DOI: https://doi.org/10.15394/ijaaa.2017.1160
- Crossing Equator: YES Crossing Prime Meridian: NO Crossing IDL or ±180 deg E/W: YES Nearest Pole: NP Hdg: W st Altitude [ft] = 36,000
- Orthodrome (Great Circle arc) Route is: 19,756.26 [km] or 10,667.53 [NM] long SEQM Orthodrome Departure Course [deg] is 358.510 WMKK Orthodrome Arrival (Final) Course [deg] is 181.492
- Vertex Lat: NORTH +88.5099 [deg] Loxodrome Route is 20,037.09 [km] or 10,819.16 [NM] long Loxodrome constant course is 270.911 [deg] Loxodrome is 151.63 [NM] or 1.421 percent longer than Orthodrome Orthodrome (O) and Loxodrome (L) Waypoints along respective route ============================================================ Waypoint O_Latitude [deg] O_Longitude [deg] L_Latitude [deg] L_Longitude [deg] WAYPT 1 -00.113332 -078.3586100 -00.113332 -078.3586100