Academia.eduAcademia.edu

Outline

Long and short-range air navigation on spherical Earth

2017, International Journal of Aviation, Aeronautics, and Aerospace

https://doi.org/10.15394/IJAAA.2017.1160

References (59)

  1. Abramowitz, M., Stegun, I. A. (1984). Handbook of mathematical functions (abridged edition). Frankfurt (am Main), Germany: Verlag Harri Deutsch.
  2. Aleksandrov, A. D., Kolmogorov, A. N., & Lavrent'ev, M. A. (1999). Mathematics: Its content, methods and meaning (3 volumes translation from Russian). Mineola, NY: Dover.
  3. Alexander, J. (2004). Loxodromes: A rhumb way to go, Mathematics Magazine, 77(5), 349-356. DOI: 10.2307/3219199
  4. Ayres, F., Jr., & Mendelson,E. (2009). Calculus (5th ed.). New York, NY: McGraw-Hill.
  5. Bate, R.R., Mueller, D. D., & White J. E. (1971). Fundamentals of astrodynamics. New York, NY: Dover.
  6. Bennett, G. G. (1996). Practical rhumb line calculations on a spheroid. Journal of Navigation, 49(2), 112-119. DOI: 10.1017/s0373463300013151
  7. Bomford, G. (1983). Geodesy (reprinted 4th ed.). New York, NY: Oxford University Press.
  8. Bowditch, N. (2002). The American Practical Navigator (2002 bicentennial ed.). Bethesda, MD: National Imagery and Mapping Agency (NIMA).
  9. Bowring, B. R. (1984). The direct and inverse solutions for the great elliptic line on the reference ellipsoid. Bulletin Géodésique 58(1), 101-108. DOI: 10.1007/BF02521760
  10. Bradley, A. D. (1942). Mathematics of air and marine navigation with tables. New York, NY: American Book Company.
  11. Bronstein, I. N., & Semendjajew, K. A. (1989). Taschenbuch der Mathematik (24. Auflage). Frankfurt/Main, Germany: Verlag Harri Deutsch.
  12. Byrd, P. F., & Friedman, M. D. (1954). Handbook of elliptic integrals for engineers and physicists. Berlin, Germany: Springer Verlag.
  13. Daidzic, N. E. (2014). Achieving global range in future subsonic and supersonic airplanes. International Journal of Aviation, Aeronautics, and Aerospace (IJAAA), 1(4), 1-29. DOI: 10.15394/ijaaa.2014.1038
  14. Daidzic, N. E. (2016a). General solution of the wind triangle problem and the critical tailwind angle, The International Journal of Aviation Sciences (IJAS), 1(1), 57-93.
  15. Daidzic, N. E. (2016b). Estimation of performance airspeeds for high-bypass turbofans equipped transport-category airplanes. Journal of Aviation Technology and Engineering (JATE), 5(2), pp. 27-50. DOI: 10.7771/2159- 6670.1122
  16. Danby, J. M. A. (1962). Fundamentals of celestial mechanics. New York, NY: MacMillan.
  17. De Florio, F. (2016). Airworthiness: An introduction to aircraft certification and operations (3rd ed.). Oxford, UK: Butterworth-Heinemann.
  18. De Remer, D., & McLean, D. W. (1998). Global navigation for pilots (2nd ed.). Newcastle, WA: Aviation Supplies and Academics, Inc.
  19. Dym, C. L., Shames, I. H. (2013). Solid mechanics: A variational approach (Augmented edition). New York, NY: Springer. DOI: 10.1007/978-1- 4614-6034-3
  20. Dwight, H. B. (1961). Tables of integrals and other mathematical data (4th ed.). New York, NY: Macmillan.
  21. Fitzpatrick, R. (2012). An introduction to celestial mechanics. Cambridge, UK: Cambridge University Press.
  22. Fox, C. (1987). An introduction to the calculus of variation. Mineola, NY: Dover.
  23. Goetz, A. (1970). Introduction to differential geometry. Reading, MA: Addison- Wesley.
  24. Greenwood, D. T. (1987). Classical dynamics. New York, NY: Dover.
  25. Hall, J. E. (1968). Analytic geometry. Belmont, CA: Brooks/Cole Publishing Co.
  26. Nielsen, K. L., & Vanlonkhuyzen, J. H. (1954). Plane and spherical trigonometry. New York, NY: Barnes & Noble.
  27. Olza, A., Taillard, F., Vautravers, E., & Diethelm, J. C. (1974). Tables numériques et formulaires. Lausanne, Switzerland: Spes S.A.
  28. Oprea, J. (2007). Differential geometry and its applications (2nd ed.). Washington, DC: The Mathematical Association of America.
  29. Phillips, W. F. (2004). Mechanics of flight. New York, NY: John Wiley & Sons.
  30. Rapp, R. H. (1991). Geometric geodesy: Part I. Columbus, OH: State University.
  31. Rapp, R. H. (1993). Geometric geodesy: Part II. Columbus, OH: State University.
  32. Rollins, C. M. (2010). An integral for geodesic length. Survey Review, 42(315), 20-26. DOI: 10.1179/003962609X451663
  33. Smith, D. R. (1998). Variational methods in optimization. Mineola, NY: Dover.
  34. Spiegel, M. R., & Liu, J. (1999). Mathematical handbook of formulas and tables (2nd ed.). New York, NY: McGraw-Hill.
  35. Sinnott, R. W. (1984). Virtues of the haversine. Sky and Telescope. 68(2), 159.
  36. Sjöberg, L. E. (2012). Solutions to the direct and inverse navigation problems on the great ellipse. Journal of Geodetic Science, 2(3), 200-205. DOI: 10.2478/v1015601100409
  37. Struik, D. J. (1987). A concise history of mathematics (4th). Mineola, NY: Dover.
  38. Struik, D. J. (1988). Lectures on classical differential geometry (2nd ed.). Mineola, NY: Dover.
  39. Tewari, A. (2007). Atmospheric and space flight dynamics: Modeling and simulation with Matlab ® and Simulink ® . Boston, MN: Birkhäuser.
  40. Tikhonov, A. N., & Samarskii, A. A. (1990). Equations of mathematical physics. Mineola, NY: Dover.
  41. Todhunter (1886). Spherical trigonometry (5th ed.). London, UK: MacMillan.
  42. Tooley, M., & Wyatt, D. (2007). Aircraft communications and navigation systems: Principles, maintenance and operation. London, UK: Taylor & Francis.
  43. Torge, W. (2001). Geodesy (3 rd ed.). Berlin, Germany: Walter de Gruyter, GmbH.
  44. Tseng, W.-K., & Lee, H.-S. (2010). Navigation on a great ellipse. Journal of marine science and technology, 18(3), 369-375.
  45. Underdown, R. B., & Palmer, T. (2001). Navigation: ground studies for pilots. 6th ed. Oxford, UK: Blackwell Science, Ltd.
  46. US Department of Transportation, Federal Aviation Administration. (2008). Extended operations (ETOPS and Polar operations) (Advisory Circular AC 120-42B). Washington, DC: Author.
  47. Vaníček, P., & Krakiwsky, E. (1986). Geodesy: The concepts (2nd ed.). New York, NY: North-Holland.
  48. Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176), 88-93. DOI: 10.1179/sre.1975.23.176.88
  49. Weber, H. J., & Arfken, G. B. (2004). Essential mathematical methods for physicists. Amsterdam, the Netherlands: Elsevier.
  50. Weintrit, A., & Kopacz, P. (2011). A novel approach to loxodrome (rhumb line), orthodrome (great circle) and geodesic line in ECDIS and navigation in general, Int. J. Marine Nav. and Safety Sea Transp., 5(4), 507-517. DOI: 10.1201/b11344-21.
  51. Widder, D. V. (1989). Advanced calculus (2nd ed.). New York, NY: Dover.
  52. Williams, E. (2011). Aviation formulary V1.46. Retrieved from http://williams.best.vwh.net/avform.htm.
  53. Williams, J. E. D. (1950). Loxodromic distances on the terrestrial spheroid. Journal of Navigation, 3(2), pp. 133-140. DOI: 10.1017/s0373463300045549
  54. Williams, R. (1996). The great ellipse on the surface of the spheroid. Journal of Navigation, 49(2), 229-234. DOI: 10.1017/s0373463300013333
  55. Wolper, J. S. (2001). Understanding mathematics for aircraft navigation. New York, NY; McGraw-Hill.
  56. Wrede, R. C. (1972). Introduction to vector and tensor analysis. New York, NY: Dover. International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2 https://commons.erau.edu/ijaaa/vol4/iss1/2 DOI: https://doi.org/10.15394/ijaaa.2017.1160 International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2 https://commons.erau.edu/ijaaa/vol4/iss1/2 DOI: https://doi.org/10.15394/ijaaa.2017.1160
  57. Crossing Equator: YES Crossing Prime Meridian: NO Crossing IDL or ±180 deg E/W: YES Nearest Pole: NP Hdg: W st Altitude [ft] = 36,000
  58. Orthodrome (Great Circle arc) Route is: 19,756.26 [km] or 10,667.53 [NM] long SEQM Orthodrome Departure Course [deg] is 358.510 WMKK Orthodrome Arrival (Final) Course [deg] is 181.492
  59. Vertex Lat: NORTH +88.5099 [deg] Loxodrome Route is 20,037.09 [km] or 10,819.16 [NM] long Loxodrome constant course is 270.911 [deg] Loxodrome is 151.63 [NM] or 1.421 percent longer than Orthodrome Orthodrome (O) and Loxodrome (L) Waypoints along respective route ============================================================ Waypoint O_Latitude [deg] O_Longitude [deg] L_Latitude [deg] L_Longitude [deg] WAYPT 1 -00.113332 -078.3586100 -00.113332 -078.3586100