Academia.eduAcademia.edu

Outline

Law invariant convex risk measures for portfolio vectors

2006, Statistics and Risk Modeling

https://doi.org/10.1524/STND.2006.24.1.97

Abstract

The class of all law invariant, convex risk measures for portfolio vectors is characterized. The building blocks of this class are shown to be formed by the maximal correlation risk measures. We further introduce some classes of multivariate distortion risk measures and relate them to multivariate quantile functionals and to an extension of the average value at risk measure.

References (15)

  1. Burgert, C. and L. Rüschendorf (2006). Consistent risk measures for portfolio vectors. Insurance: Mathematics and Economics 38, 289-297.
  2. Carlier, G. and R.-A. Dana (2003). Core of convex distortions of probability. Journal of Econometric Theory 13, 199-222.
  3. Dana, R.-A. (2005). A presentation result for concave Schur concave functions. Preprint, Université Paris Dauphine.
  4. Delbaen, F. (2000). Coherent risk measures. Cattedra Galileiana. Classe di Scienze, Pisa: Scuola Normale Superiore.
  5. Delbaen, F. (2002). Coherent risk measures on general probability spaces. In K. Sand- mann et al. (Eds.), Advances in Finance and Stochastics. Essays in Honour of Dieter Sondermann, pp. 1-37. Springer.
  6. Dhaene, J., S. Vanduffel, Q. Tang, M. Goovaerts, R. Kaas, and D. Vyncke (2004). Sol- vency capital, risk measures and comonotonicity: A review. Research report OR 0416, Department of Applied Economics, K.U. Leuven.
  7. Föllmer, H. and A. Schied (2004). Stochastic Finance (2nd ed.). de Gruyter.
  8. Jouini, E., M. Meddeb, and N. Touzi (2004). Vector-valued coherent risk measures. Fi- nance and Stochastics 4, 531-552.
  9. Jouini, E., W. Schachermayer, and N. Touzi (2005). Law invariant risk measures have the Fatou property. Preprint.
  10. Kusuoka, S. (2001). On law-invariant coherent risk measures. Advances in Mathematical Economics 3, 83-95.
  11. Rüschendorf, L. (1985). The Wasserstein distance and approximation theorems. Zeit- schrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 70, 117-129.
  12. Rüschendorf, L. and S. T. Rachev (1990). A characterization of random variables with minimum L 2 -distance. Journal of Multivariate Analysis 1, 48-54.
  13. Wang, S., V. Young, and H. Panjer (1997). Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics 21, 173-183.
  14. Wirch, J. L. and M. R. Hardy (2000). Distortion risk measures: Coherence and stochastic dominance. Working paper. Ludger Rüschendorf Department of Mathematical Stochastics University of Freiburg Eckerstr. 1
  15. D-79104 Freiburg (Germany) ruschen@stochastik.uni-freiburg.de