Academia.eduAcademia.edu

Outline

Parameter estimation for energy balance models with memory

2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

https://doi.org/10.1098/RSPA.2014.0349

Abstract

We study parameter estimation for one-dimensional energy balance models with memory (EBMMs) given localized and noisy temperature measurements. Our results apply to a wide range of nonlinear, parabolic partial differential equations with integral memory terms. First, we show that a space-dependent parameter can be determined uniquely everywhere in the PDE's domain of definitionD, using only temperature information in a small subdomainE⊂D. This result is valid only when the data correspond to exact measurements of the temperature. We propose a method for estimating a model parameter of the EBMM using more realistic, error-contaminated temperature data derived, for example, from ice cores or marine-sediment cores. Our approach is based on a so-called mechanistic-statistical model that combines a deterministic EBMM with a statistical model of the observation process. Estimating a parameter in this setting is especially challenging, because the observation process induces a strong l...

References (59)

  1. Budyko MI. 1969 The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611-619. (doi:10.1111/j.2153-3490.1969.tb00466.x)
  2. Sellers WD. 1969 A global climatic model based on the energy balance of the Earth atmosphere system. J. Appl. Meteorol. 21, 391-400.
  3. Ghil M, Childress S. 1987 Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics. New York, NY: Springer.
  4. Held I, Suarez M. 1974 Simple albedo feedback models of the icecaps. Tellus 36, 613-629. (doi:10.1111/j.2153-3490.1974.tb01641.x)
  5. North GR, Cahalan RF, Coakley JA. 1981 Energy balance climate models. Rev. Geophys. Space Phys. 19, 91-121. (doi:10.1029/RG019i001p00091)
  6. Ghil M. 1976 Climate stability for a Sellers-type model. J. Atmos. Sci. 33, 3-20. (doi:10.1175/ 1520-0469(1976)033<0003:CSFAST>2.0.CO;
  7. Arcoya D, Diaz JI, Tello L. 1998 S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology. J. Diff. Equ. 150, 215-225. (doi:10.1006/jdeq.1998.3502)
  8. Hetzer G. 1996 Global existence, uniqueness, and continuous dependence for a reaction- diffusion equation with memory. Electronic J. Diff. Equ. 5, 1-16.
  9. Diaz JI, Hetzer G, Tello L. 2006 An energy balance climate model with hysteresis. Nonlinear Anal. 64, 2053-2074. (doi:10.1016/j.na.2005.07.038)
  10. Benzi R, Sutera A, Vulpiani A. 1981 The mechanism of stochastic resonance. J. Phys. A 14, 453-457. (doi:10.1088/0305-4470/14/11/006)
  11. Imkeller P. 2001 Energy balance models: viewed from stochastic dynamics. In Stochastic climate models (eds P Imkeller, J-S Von Storch). Prog. Prob. vol. 49, pp. 213-240. Basel, Switzerland: Birkhäuser. rspa.royalsocietypublishing.org Proc. R. Soc. A 470: 20140349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  12. North GR, Mengel JG, Short DA. 1983 Simple energy balance model resolving the seasons and the continents: application to the astronomical theory of the ice ages. J. Geophys. Res. 88, 6576-6586. (doi:10.1029/JC088iC11p06576)
  13. Stone DA, Allen MR, Selten F, Kliphuis M, Stott PA. 2007 The detection and attribution of climate change using an ensemble of opportunity. J. Clim. 20, 504-516. (doi:10.1175/ JCLI3966.1)
  14. Ghil M. 1994 Cryothermodynamics: the chaotic dynamics of paleoclimate, Physica D 77, 130-159. (doi:10.1016/0167-2789(94)90131-7)
  15. Bermejo R, Carpio J, Diaz JI, Tello L. 2008 Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model. Math. Comput. Modell. 49, 1180-1210. (doi:10.1016/j.mcm.2008.04.010)
  16. Ghil M, Chekroun MD, Simonnet E. 2008 Climate dynamics and fluid mechanics: natural variability and related uncertainties. Physica D 237, 2111-2126. (doi:10.1016/j. physd.2008.03.036)
  17. Bhattacharya K, Ghil M, Vulis IL. 1982 Internal variability of an energy-balance model with delayed albedo effects. J. Atmos. Sci. 39, 1747-1773. (doi:10.1175/1520-0469 (1982)039<1747:IVOAEB>2.0.CO;2)
  18. Chekroun MD, Simonnet E, Ghil M. 2011 Stochastic climate dynamics: random attractors and time-dependent invariant measures. Physica D 240, 1685-1700. (doi:10.1016/j. physd.2011.06.005)
  19. Hetzer G. 1995 A functional reaction-diffusion equation from climate modeling: S-shapedness of the principal branch of fixed points of the time-1-map. Differ. Integral Equ. 8, 1047-1059. (doi:10.1016/S0362-546X(97)00119-3)
  20. Diaz JI, Hetzer G. 1997 A quasilinear functional reaction-diffusion equation from climate modeling. Nonlinear Anal. 30, 2547-2556. (doi:10.1016/S0362-546X(97)00119-3)
  21. Berliner LM. 2003 Physical-statistical modeling in geophysics. J. Geophys. Res. 108, 8776. (doi:10.1029/2002JD002865)
  22. Wikle CK. 2003 Hierarchical models in environmental science. Int. Stat. Rev. 71, 181-199. (doi:10.1111/j.1751-5823.2003.tb00192.x)
  23. Roques L, Soubeyrand S, Rousselet J. 2011 A statistical-reaction-diffusion approach for analyzing expansion processes. J. Theor. Biol. 274, 43-51. (doi:10.1016/j.jtbi.2011.01.006)
  24. Salamatin A, Lipenkov V, Barkov N, Jouzel J, Petit J, Raynaud D. 1998 Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica). J. Geophys. Res. 103, 8963-8977. (doi:10.1029/97JD02253)
  25. Parrenin F, Rémy F, Ritz C, Siegert MJ, Jouzel J. 2004 New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J. Geophys. Res. 109, D20. (doi:10.1029/2004JD004561)
  26. Crafoord C, Källén E. 1978 A note on the condition for existence of more than one steady state solution in Budyko-Sellers type models. J. Atmos. Sci. 35, 1123-1125. (doi:10.1175/ 1520-0469(1978)035<1123:ANOTCF>2.0.CO;
  27. Fraedrich K. 1978 Structural and stochastic analysis of a zero-dimensional climate system. Q. J. R. Meteorol. Soc. 104, 461-474. (doi:10.1002/qj.49710444017)
  28. Fraedrich K. 1979 Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q. J. R. Meteorol. Soc. 105, 147-167. (doi:10.1002/ qj.49710544310)
  29. Ghil M. 1984 Climate sensitivity, energy balance models, and oscillatory climate models. J. Geophys. Res. 89, 280-1284. (doi:10.1029/JD089iD01p01280)
  30. Müller-Stoffels M, Wackerbauer R. 2012 Albedo parametrization and reversibility of sea ice decay. Nonlinear Process. Geophys. 19, 81-94. (doi:10.5194/npg-19-81-2012)
  31. Wu J. 1996 Theory and applications of partial functional differential equations. Applied Mathematical Sciences, vol. 119. New York, NY: Springer.
  32. Sell GR, You Y. 2002 Dynamics of evolutionary equations. Applied Mathematical Sciences, vol. 143. New York, NY: Springer.
  33. Amann H. 2006 Quasilinear parabolic functional evolution equations. In Recent advances in elliptic and parabolic issues (eds M Chipot, H Ninomiya). Proc. 2004 Swiss-Japanese Seminar, pp. 19-44. Singapore: World Scientific.
  34. Pao CV. 1992 Nonlinear parabolic and elliptic equations. New York, NY: Plenum Press.
  35. Klibanov MV, Timonov A. 2004 Carleman estimates for coefficient inverse problems and numerical applications. Inverse and Ill-Posed Series, VSP. Utrecht. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  36. Yamamoto M, Zou J. 2001 Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17, 1181-1202. (doi:10.1088/0266-5611/17/4/340)
  37. Belassoued M, Yamamoto M. 2006 Inverse source problem for a transmission problem for a parabolic equation. J. Inverse Ill-Posed Probl. 14, 47-56. (doi:10.1515/156939406776237456)
  38. Cristofol M, Roques L. 2008 Biological invasions: deriving the regions at risk from partial measurements. Math. Biosci. 215, 158-166. (doi:10.1016/j.mbs.2008.07.004)
  39. Roques L, Cristofol M. 2010 On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation. Nonlinearity 23, 675-686. (doi:10.1088/0951- 7715/23/3/014)
  40. Cristofol M, Garnier J, Hamel F, Roques L. 2011 Uniqueness from pointwise observations in a multi-parameter inverse problem. Commun. Pure Appl. Anal. 11, 1-15. (doi:10.3934/ cpaa.2012.11.173)
  41. Williams DF, Lerche I, Full WE. 1988 Isotope chronostratigraphy: theory and methods. Geology Series. San Diego, CA: Academic Press.
  42. Metropolis N, Rosenbluth AW, Rosenbluth NM, Teller AH, Teller E. 1953 Equation of state calculations for fast computing machines. J. Chem. Phys. 21, 1087-1092. (doi:10.1063/ 1.1699114)
  43. Hastings WK. 1970 Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109. (doi:10.1093/biomet/57.1.97)
  44. Trefethen LN, Embree M. 2005 Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton, NJ: Princeton University Press.
  45. Chekroun MD, Kondrashov D, Ghil M. 2011 Predicting stochastic systems by noise sampling, and application to the El Niño southern oscillation. Proc. Natl Acad. Sci. USA 108, 11 766- 11 771. (doi:10.1073/pnas.1015753108)
  46. Farrell BF. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31, 2093-2102. (doi:10.1063/1.866609)
  47. Reddy SC, Schmid PJ, Henningson DS. 1993 Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math. 53, 15-47. (doi:10.1137/0153002)
  48. Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578-584. (doi:10.1126/science.261.5121.578)
  49. Cavaterra C, Lorenzi A, Yamamoto M. 2006 A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation. Comput. Appl. Math. 25, 229-250. (doi:10.1590/S0101-82052006000200007)
  50. National Research Council 2006. Surface temperature reconstructions for the last 2000 years, 196 pp. Washington, DC: National Academies Press.
  51. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
  52. Ghil M, Cohn SE, Tavantzis J, Bube KP, Isaacson E. 1981 Applications of estimation theory to numerical weather prediction. In Dynamic meteorology: data assimilation methods (eds L Bengtsson, M Ghil, E Källén), pp. 139-224. Berlin, Germany: Springer.
  53. Ghil M, Malanotte-Rizzoli P. 1991 Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141-266. (doi:10.1016/S0065-2687(08)60442-2)
  54. Kondrashov D, Sun CJ, Ghil M. 2008 Data assimilation for a coupled ocean-atmosphere model. Part II: parameter estimation. Mon. Weather Rev. 136, 5062-5076. (doi:10.1175/ 2008MWR2544.1)
  55. Lorenz EN. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141. (doi:10.1175/ 1520-0469(1963)020<0130:DNF>2.0.CO;
  56. Chekroun MD, Di Plinio F, Glatt-Holtz NE, Pata V. 2011 Asymptotics of the Coleman-Gurtin model. Discrete Contin. Dyn. Syst. Ser. S 4, 351-369. (doi:10.3934/dcdss.2011.4.351)
  57. Protter MH, Weinberger HF. 1967 Maximum principles in differential equations. Englewood Cliffs, NJ: Prentice Hall.
  58. Jarny Y, Ozisik MN, Bardon JP. 1991 A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. Int. J. Heat Mass Transfer 34, 2911-2919. (doi:10.1016/0017-9310(91)90251-9)
  59. Singler JR. 2008 Transition to turbulence, small disturbances, and sensitivity analysis I: a motivating problem. J. Math. Anal. Appl. 337, 1425-1441. (doi:10.1016/j.jmaa.2007.03.094)