Optimal Experimental Designs for Multilevel Logistic Models
2001, The Statistician
https://doi.org/10.1111/1467-9884.00257Abstract
When designing experiments in multilevel populations the following questions arise: what is the optimal level of randomization, and what is the optimal allocation of units? In this paper these questions will be dealt with for populations with two levels of nesting and binary outcomes. The multilevel logistic model, which is used to describe the relationship between treatment condition and outcome, is linearized. The variance of the regression coef®cient associated with treatment condition in the linearized model is used to ®nd the optimal level of randomization and the optimal allocation of units. An analytical expression for this variance can only be obtained for the ®rst-order marginal quasi-likelihood linearization method, which is known to be biased. A simulation study shows that penalized quasi-likelihood linearization and numerical integration of the likelihood lead to conclusions about the optimal design that are similar to those from the analytical derivations for ®rst-order marginal quasi-likelihood.
References (30)
- Atkinson, A. C. and Donev, A. N. (1996) Optimum Experimental Design. Oxford: Clarendon. Bach, D., Van den Berg-Segers, A., Hu Èbner, A., Van Breukelen, G., Cesana, M. and Ple Âtan, Y. (1995) Ru¯oxacin once daily versus cipro¯oxacin twice daily in the treatment of patients with acute uncomplicated pyelonephritis. J. Urol., 154, 19±24.
- Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear models. J. Am. Statist. Ass., 88, 9±25.
- Bryk, A. S. and Raudenbush, S. W. (1992) Hierarchical Linear Models. Newbury Park: Sage.
- Bryk, A. S., Raudenbush, S. W. and Congdon, Jr, R. T. (1996) HLM: Hierarchical Linear and Nonlinear Modeling with the HLM/2L and HLM/3L Programs. Chicago: Scienti®c Software International.
- Cochran, W. G. (1983) Planning and Analysis of Observational Studies. New York: Wiley.
- De Vries, H., Backbier, E., Dijkstra, M., Van Breukelen, G., Parcel, G. and Kok, G. (1994) A Dutch social in¯uence smoking prevention approach for vocational school students. Hlth Educ. Res., 9, 365±374.
- Donald, A. and Donner, A. (1987) Adjustments to the Mantel-Haenszel chi-squared statistic and odds ratio variance estimator when the data are clustered. Statist. Med., 6, 492±499.
- Donner, A. (1998) Some aspects of the design and analysis of cluster randomization trials. Appl. Statist., 47, 95±113.
- Donner, A., Birkett, N. and Buck, C. (1981) Randomization by cluster: sample size requirements and analysis. Am. J. Epidem., 114, 906±914.
- Donner, A., Brown, K. S. and Brasher, P. (1990) A methodological review of non-therapeutic intervention trials employing cluster randomization, 1979±1989. Int. J. Epidem., 19, 795±800.
- Feng, Z. and Grizzle, J. E. (1992) Correlated binomial variates: properties of estimator of intraclass correlation and its effect on sample size calculation. Statist. Med., 11, 1607±1614.
- Gibbons, R. D. and Hedeker, D. (1997) Random effects probit and logistic regression models for three-level data. Biometrics, 53, 1527±1537.
- Goldstein, H. (1986) Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 43±56. Ð (1989) Restricted unbiased iterative generalized least squares estimation. Biometrika, 76, 622±623. Ð (1991) Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78, 45±51. Ð (1995) Multilevel Statistical Models, 2nd edn. London: Arnold.
- Goldstein, H. and Rasbash, J. (1996) Improved approximations for multilevel models with binary responses. J. R. Statist. Soc. A, 159, 505±513.
- Goldstein, H., Rasbash, J., Plewis, I., Draper, D., Browne, W., Yang, M., Woodhouse, G. and Healy, M. (1998) A User's Guide to MLwiN. London: Institute of Education.
- Hedeker, D. and Gibbons, R. D. (1994) A random-effects ordinal regression model for multilevel analysis. Biometrics, 50, 933±944. Ð (1996) MIXOR: a computer program for mixed-effects ordinal regression analysis. Comput. Meth. Programs Biomed., 49, 157±176.
- Hedeker, D., McMahon, S. D., Jason, L. A. and Salina, D. (1994) Analysis of clustered data in community psychology: with an example from a worksite smoking cessation project. Am. J. Commty Psychol., 22, 595±615.
- Hox, J. J. (1994) Applied Multilevel Analysis. Amsterdam: TT.
- Hsieh, F. Y. (1988) Sample size formulae for intervention studies with the cluster as unit of randomization. Statist. Med., 8, 1195±1201.
- Hsieh, F. Y., Bloch, D. A. and Larsen, M. D. (1998) A simple method of sample size calculation for linear and logistic regression. Statist. Med., 17, 1623±1634.
- Kreft, I. and De Leeuw, J. (1998) Introducing Multilevel Modeling. London: Sage.
- Lee, E. W. and Dubin, N. (1994) Estimation and sample size considerations for clustered binary data. Statist. Med., 13, 1241±1252.
- Lipsitz, S. R. and Parzen, M. (1995) Sample size calculations for non-randomized studies. Statistician, 44, 81±90.
- Liu, G. and Liang, K.-Y. (1997) Sample size calculations for studies with correlated observations. Biometrics, 53, 937±947. Longford, N. T. (1995) Random Coef®cient Models. Oxford: Clarendon.
- Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natn. Cancer Inst., 22, 719±748.
- Moerbeek, M., Van Breukelen, G. J. P. and Berger, M. P. F. (1999) Optimal experimental designs for multilevel models with covariates. Technical Report 9901. Department of Methodology and Statistics, Maastricht University, Maastricht. Ð (2000) Design issues for experiments in multilevel populations. J. Educ. Behav. Statist., 25, 271±284.
- Raudenbush, S. W. (1997) Statistical analysis and optimal design for cluster randomized trials. Psychol. Meth., 2, 173±185. Rodrõ Âguez, G. and Goldman, N. (1995) An assessment of estimation procedures for multilevel models with binary responses. J. R. Statist. Soc. A, 158, 73±89.
- Shih, W. J. (1997) Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations. Biometr. J., 39, 899±908.
- Snijders, T. A. B. and Bosker, R. J. (1993) Standard errors and sample sizes for two-level research. J. Educ. Statist., 18, 237±259. Ð (1999) Multilevel Analysis: an Introduction to Basic and Advanced Multilevel Modeling. London: Sage.
- Woolf, B. (1955) On estimating the relation between blood group and disease. Ann. Hum Genet., 19, 251±253.