Academia.eduAcademia.edu

Outline

A Putative Mechanism for Bog Patterning

2004, The American Naturalist

https://doi.org/10.1086/383065

Abstract

The surface of bogs commonly shows various spatial vegetation patterning. Typical are "string patterns" consisting of regular densely vegetated bands oriented perpendicular to the slope. Here, we report on regular "maze patterns" on flat ground, consisting of bands densely vegetated by vascular plants in a more sparsely vegetated matrix of nonvascular plant communities. We present a model reproducing these maze and string patterns, describing how nutrient-limited vascular plants are controlled by, and in turn control, both hydrology and solute transport. We propose that the patterns are self-organized and originate from a nutrient accumulation mechanism. In the model, this is caused by the convective transport of nutrients in the groundwater toward areas with higher vascular plant biomass, driven by differences in transpiration rate. In a numerical bifurcation analysis we show how the maze patterns originate from the spatially homogeneous equilibrium and how this is affected by changes in rainfall, nutrient input, and plant properties. Our results confirm earlier model results, showing that redistribution of a limiting resource may lead to fine-scale facilitative and coarse-scale competitive plant interactions in different ecosystems. Self-organization in ecosystems may be a more general phenomenon than previously thought, which can be mechanistically linked to scale-dependent facilitation and competition.

References (32)

  1. Alexandrov, G. A. 1988. A spatially distributed model of raised bog relief. Pages 41-53 in W. J. Mitsch, M. Stras- kraba, and S. E. Jorgensen, eds. Wetland modelling. El- sevier, Amsterdam.
  2. Belyea, L. R., and R. S. Clymo. 2001. Feedback control on the rate of peat formation. Proceedings of the Royal Society of London B 268:1315-1321.
  3. Belyea, L. R., and J. Lancaster. 2002. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. Journal of Ecology 90:223-234.
  4. Couteron, P., and O. Lejeune. 2001. Periodic spotted pat- terns in semi-arid vegetation explained by a propaga- tion-inhibition model. Journal of Ecology 89:616-628.
  5. De Angelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Population and Community Biology Series 9. Chapman & Hall, London.
  6. Feddes, R. A., P. J. Kowalik, and H. Zaradny. 1978. Sim- ulation of field water use and crop yield. Simulation Monograph. Pudoc, Wageningen.
  7. Fitter, A. H., and R. K. M. Hay. 1983. Environmental phys- iology of plants. Academic Press, London.
  8. Foster, D. R., G. A. King, P. H. Glaser, and H. E. Wright, Jr. 1983. Origin of string patterns in boreal peatlands. Nature 306:256-258.
  9. Hilbert, D. W., N. Roulet, and T. Moore. 2000. Modelling and analysis of peatlands as dynamical systems. Journal of Ecology 88:230-242.
  10. HilleRisLambers, R., M. Rietkerk, F. van den Bosch, H. H. T. Prins, and H. de Kroon. 2001. Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50- 61.
  11. Kim, J., and S. B. Verma. 1996. Surface exchange of water vapour between an open sphagnum fen and the atmo- sphere. Boundary-Layer Meteorology 79:243-264.
  12. Lapshina, E. D., N. N. Pologova, and E. Y. Mouldiyarov. 2001. Pattern of development and carbon accumulation in homogeneous Sphagnum fuscum-peat deposit on the south of West Siberia. Pages 101-104 in S. V. Vasiliev, A. A. Titlyanova, and A. A. Velichko, eds. West Siberian peatlands and carbon cycle: past and present. Proceed- ings of the International Field Symposium (Noyabrsk, August 18-22, 2001). Agenstvo Sibprint, Novosibirsk.
  13. Lefever, R., and O. Lejeune. 1997. On the origin of tiger bush. Bulletin of Mathematical Biology 59:263-294.
  14. Lejeune, O., M. Tlidi, and P. Couteron. 2002. Localized vegetation patches: a self-organized response to resource scarcity. Physical Review E 66:010901-1.
  15. Lindsay, R. A., J. Rigall, and F. Burd. 1985. The use of small-scale surface patterns in the classification of Brit- ish peatlands. Aquilo Ser Botanica 21:69-79.
  16. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London.
  17. Meinhardt, H. 1995. The algorithmic beauty of sea shells. Springer, Berlin.
  18. Nemes, A., M. G. Schaap, F. J. Leij, and J. H. M. Wosten. 2001. Description of the unsaturated soil hydraulic da- tabase UNSODA version 2.0. Journal of Hydrology 251: 151-162.
  19. Okubo, A. 1989. Diffusion and ecological problems. Springer, New York.
  20. Pastor, J., B. Peckham, S. Bridgham, J. Weltzin, and J. Chen. 2002. Plant community dynamics, nutrient cy- cling, and alternative stable equilibria in peatlands. American Naturalist 160:553-568.
  21. Reeve, A. S., D. I. Siegel, and P. H. Glaser. 2001. Simulating dispersive mixing in large peatlands. Journal of Hy- drology 242:103-114.
  22. Rietkerk, M., and J. van de Koppel. 1997. Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79:69-76.
  23. Rietkerk, M., M. C. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. van de Koppel, L. Kumar, H. H. T. Prins, and A. M. de Roos. 2002. Self-organization of vegetation in arid ecosystems. American Naturalist 160: 524-530.
  24. Rohani, P., T. J. Lewis, D. Grunbaum, and G. D. Ruxton. 1997. Spatial self-organization in ecology: pretty pat- terns or robust reality? Trends in Ecology & Evolution 12:70-74.
  25. Sakaguchi, Y. 1980. On the genesis of banks and hollows in peat bogs: an explanation by a thatch line theory. Bulletin of the Department of Geography University of Tokyo 12:35-58.
  26. Semenova, N. M., and E. D. Lapshina. 2001. Description of the West Siberian Plain. Pages 10-22 in W. Bleuten and E. D. Lapshina, eds. Carbon storage and atmo- spheric exchange by West Siberian Peatlands. FGUU Scientific Reports 2001-1. Physical Geography, Utrecht University.
  27. Swanson, D. K., and D. F. Grigal. 1988. A simulation model of mire patterning. Oikos 53:309-314.
  28. Turing, A. M. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of Lon- don B 237:37-72.
  29. UNEP/RIVM. 1999. A. F. Bouwman and D. P. van Vuuren. Global assessment of acidification and eutrophication of natural ecosystems. UNEP/DEIA&EW/TR.99-6 and RIVM 402001012.
  30. Von Hardenberg, J., E. Meron, M. Shachak, and Y. Zarmi. 2001. Diversity of vegetation patterns and desertifica- tion. Physical Review Letters 87:19.
  31. Wassen, M. J., H. G. M. Olde Venterink, and E. O. A. M. de Swart. 1995. Nutrient concentrations in mire vege- tation as a measure of nutrient limitation in mire eco- systems. Journal of Vegetation Science 6:5-16.
  32. Yefremov, S. P., and T. T. Yefremova. 2001. Stocks and forms of deposited carbon and nitrogen in bog ecosys- tems of West Siberia. Pages 148-151 in S. V. Vasiliev, A. A. Titlyanova, and A. A. Velichko, eds. West Siberian peatlands and carbon cycle: past and present. Proceed- ings of the International Field Symposium (Noyabrsk, August 18-22, 2001). Agenstvo Sibprint, Novosibirsk. Associate Editor: James P. Grover