Academia.eduAcademia.edu

Outline

The Duality of Computation under Focus

2010, IFIP Advances in Information and Communication Technology

https://doi.org/10.1007/978-3-642-15240-5_13

Abstract

We review the relationship between abstract machines for (call-byname or call-by-value) λ-calculi (extended with Felleisen's C) and sequent calculus, reintroducing on the way Curien-Herbelin's syntactic kit of the duality of computation. We provide a term language for a presentation of LK (with conjunction, disjunction, and negation), and we transcribe cut elimination as (non confluent) rewriting. A key slogan, which may appear here in print for the first time, is that commutative cut elimination rules are explicit substitution propagation rules. We then describe the focalised proof search discipline (in the classical setting), and narrow down the language and the rewriting rules to a confluent calculus (a variant of the second author's focalising system L). We then define a game of patterns and counterpatterns, leading us to a fully focalised finitary syntax for a synthetic presentation of classical logic, that provides a quotient on (focalised) proofs, abstracting out the order of decomposition of negative connectives.

References (27)

  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitutions. Journal of Func- tional Programming 1(4) (1992)
  2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297-347 (1992)
  3. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. Int. Conf. on Functional Programming 2000 (2000)
  4. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: linear logic. Journal of Symbolic Logic 62(3) (1997)
  5. Danvy, O.: Back to direct style. Science of Computer Programming 22(3), 183-195 (1994)
  6. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cam- bridge (1989)
  7. Girard, J.-Y.: A new constructive logic: classical logic. Mathematical Structures in Computer Science 1, 255-296 (1991)
  8. Girard, J.-Y.: Locus solum: from the rules of logic to the logic of rules. Mathematical Struc- tures in Computer Science 11(3), 301-506 (2001)
  9. Griffin, T.: A formulae-as-types notion of control. In: Proc. Principles of Programming Lan- guages 1990 (1990)
  10. Herbelin, H.: Séquents qu'on calcule, Thèse de Doctorat, Université Paris 7 (1995), http://pauillac.inria.fr/ ˜herbelin
  11. Herbelin, H.: C'est maintenant qu'on calcule, au coeur de la dualité, Mémoire d'habilitation (2005) (available from cited url)
  12. Krivine, J.-L.: Lambda-calcul, types et modèles, Masson (1991)
  13. Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher Order and Symbolic Com- putation 20, 199-207 (2007)
  14. Lafont, Y., Reus, B., Streicher, T.: Continuation Semantics or Expressing Implication by Negation. Technical Report (1993)
  15. Landin, P.: The mechanical evaluation of expressions. Computer Journal 6, 308-320 (1964)
  16. Laurent, O.: Etude de la polarisation en logique. Thèse de Doctorat, Univ. Aix-Marseille II (2002)
  17. Laurent, O., Quatrini, M., Tortora de Falco, L.: Polarised and focalised linear and classical proofs. Ann. of Pure and Appl. Logic 134(2-3), 217-264 (2005)
  18. Levy, P.B.: Call-by-push-value. In: A functional/imperative synthesis, Semantic Structures in Computation. Springer, Heidelberg (2004)
  19. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 409-423. Springer, Heidelberg (2009), http://perso.ens-lyon.fr/guillaume.munch/articles
  20. Murthy, C.: A computational analysis of Girard's translation and LC. In: Proc. LICS 1992 (1992)
  21. Nipkow, T.: Orthogonal higher-order rewriting systems are confluent. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 306-317. Springer, Heidelberg (1993)
  22. Ong, L., Stewart, C.: A Curry-Howard foundation for functional computation with control. In: Proc. POPL '97 (1997)
  23. Parigot, M.: λμ-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190-201. Springer, Heidelberg (1992)
  24. Plotkin, G.: Call-by-name, call-by-value and the lambda-calculus. TCS 1, 125-159 (1975)
  25. Quatrini, M., Tortora de Falco, L.: Polarisation des preuves classiques et renversement. C.R.A.S.. 323(I), 113-116 (1996)
  26. Wadler, P.: Call-by-value is dual to call-by-name. In: Proc. ICFP 2003 (2003)
  27. Zeilberger, N.: On the unity of duality. Ann. of Pure and Appl. Logic 153(1), 66-96 (2008)