Wiener Tauberian Theorems for Distributions
1993, Journal of the London Mathematical Society
Abstract
Wiener Tauberian theorems are proved for integral transforms of Schwartz distributions in which the kernel of the transform belongs to a suitable testing function space.
References (16)
- J. J. BENEDETTO, Spectral synthesis (Academic Press, New York, 1975).
- N. H. BINGHAM, C. M. GOLDIE and J. L. TEUGELS, Regular variation (University Press, Cambridge, 1989).
- H. DELANGE, 'Sur les theoremes inverses des procedes de sommation des series divergentes, I and II', Ann. Sci. Ecole. Norm. Sup. (3) 67 (1950) 99-160 and 199-242.
- W. F. DONOGHUE, Distributions and Fourier transforms (Academic Press, New York, 1969).
- T. H. GANELIUS, Tauberian remainder theorems, Lecture Notes in Mathematics 232 (Springer, Berlin, 1971).
- J. KARAMATA, ' Sur un mode de croissance reguliere des fonctions', Mathematica (Cluf) 4 (1930) 38-53.
- J. KOREVAAR, 'Distribution proof of Wiener's Tuberian theorem', Proc. Amer. Math. Soc. 16 (1965) 353-355.
- J. PEETRE, 'On the value of a distribution at a point', Portugal. Math. 27 (1968) 149-159.
- S. PILIPOVIC, B. STANKOVIC and A. TAKACI, Asymptotic behaviour and Stieltjes transformation of distributions (Teubner, Leipzig, 1990).
- H. R. PITT, 'General Tauberian theorems', Proc. London Math. Soc. (2) 44 (1938) 243-288.
- H. R. PITT, Tauberian theorems (Oxford University Press, London, 1958).
- H. REITER, Classical harmonic analysis and locally compact groups (Clarendon Press, Oxford, 1968).
- L. SCHWARTZ, Theorie des distributions (Nouvelle edition, Hermann, Paris, 1966).
- V. S. VLADIMIROV, YU. N. DROZZINOV and B. I. ZAVJALOV, Multi-dimensional theorems of Tauberian type for generalized functions (Nauka, Moscow, 1986).
- N. WIENER, 'Tauberian theorems', Annals of Math. 33 (1932) 1-100.
- A. H. ZEMANIAN, Generalized integral transformations, Interscience (John Wiley, New York- London-Sydney, 1968).