Tulane virus recognizes sialic acids as cellular receptors
2015, Scientific reports
https://doi.org/10.1038/SREP11784Abstract
The recent discovery that human noroviruses (huNoVs) recognize sialic acids (SAs) in addition to histo-blood group antigens (HBGAs) pointed to a new direction in studying virus-host interactions during calicivirus infection. HuNoVs remain difficult to study due to the lack of an effective cell culture model. In this study, we demonstrated that Tulane virus (TV), a cultivable primate calicivirus, also recognizes SAs in addition to the previously known TV-HBGA interactions. Evidence supporting this discovery includes that TV virions bound synthetic sialoglycoconjugates (SGCs) and that treatment of TV permissive LLC-MK2 cells with either neuraminidases or SA-binding lectins inhibited TV infectivity. In addition, we found that Maackia amurensis leukoagglutinin (MAL), a lectin that recognizes the α-2,3 linked SAs, bound LLC-MK2 cells, as well as TV, by which MAL promoted TV infectivity in cell culture. Our findings further highlight TV as a valuable surrogate for huNoVs, particularly in ...
References (54)
- Green, K., Chanock, R. & Kapikian, A. in Fields Virology, Vol. 2, Edn. 4th. (eds. D. M. Knipe et al.) 841-874 (Lippincott Williams & Wilkins, Philadelphia; 2001).
- Hall, A. J. et al. Norovirus disease in the United States. Emerg Infect Dis 19, 1198-1205 (2013).
- Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14, 1224-1231 (2008).
- Jones, M. K. et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346, 755-759 (2014).
- Taube, S. et al. A mouse model for human norovirus. mBio 4, e00450-00413 (2013).
- Huang, P. et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79, 6714-6722 (2005).
- Tan, M. et al. Noroviral P particle: Structure, function and applications in virus-host interaction. Virology 382, 115-123 (2008).
- Tan, M. & Jiang, X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. Journal of Virology 79, 14017-14030 (2005).
- Farkas, T., Sestak, K., Wei, C. & Jiang, X. Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 82, 5408-5416 (2008).
- Farkas, T. et al. Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J Virol 84, 8617-8625 (2010).
- Yu, G. et al. Cryo-EM Structure of a Novel Calicivirus, Tulane Virus. PLoS One 8, e59817 (2013).
- Sestak, K. et al. Experimental inoculation of juvenile rhesus macaques with primate enteric caliciviruses. PLoS One 7, e37973 (2012).
- Zhang, D. et al. Tulane virus recognizes the A-type 3 and B histo-blood group antigens. J Virol 89, 1419-1427 (2014).
- Tan, M. & Jiang, X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13, 285-293 (2005).
- Tan, M. & Jiang, X. Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS pathogens 6, e1000983 (2010).
- Tan, M. & Jiang, X. Norovirus-host interaction: Multi-selections by human histo-blood group antigens. Trends in microbiology 19, 382-388 (2011).
- Huang, P. et al. Noroviruses Bind to Human ABO, Lewis, and Secretor Histo-Blood Group Antigens: Identification of 4 Distinct Strain-Specific Patterns. J Infect Dis 188, 19-31 (2003).
- Bu, W. et al. Structural basis for the receptor binding specificity of Norwalk virus. J Virol 82, 5340-5347 (2008).
- Cao, S. et al. Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81, 5949-5957 (2007).
- Chen, Y. et al. Crystallography of a lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histo- blood group antigens. PLoS pathogens 7, e1002152 (2011).
- Choi, J. M., Hutson, A. M., Estes, M. K. & Prasad, B. V. Atomic resolution structural characterization of recognition of histo- blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences of the United States of America 105, 9175-9180 (2008).
- Tan, M. et al. Mutations within the P2 Domain of Norovirus Capsid Affect Binding to Human Histo-Blood Group Antigens: Evidence for a Binding Pocket. J Virol 77, 12562-12571 (2003).
- Tan, M. et al. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology 379, 324-334 (2008).
- Tan, M. et al. Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution. PLoS One 4, e5058 (2009).
- Frenck, R. et al. Predicting Susceptibility to Norovirus GII.4 by Use of a Challenge Model Involving Humans. J Infect Dis 206, 1386-1393 (2012).
- Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nature medicine 9, 548-553 (2003).
- Hutson, A. M., Airaud, F., LePendu, J., Estes, M. K. & Atmar, R. L. Norwalk virus infection associates with secretor status genotyped from sera. Journal of medical virology 77, 116-120 (2005).
- Carlsson, B. et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS One 4, e5593 (2009).
- Kindberg, E. et al. Host genetic resistance to symptomatic norovirus (GGII.4) infections in Denmark. Journal of clinical microbiology 45, 2720-2722 (2007).
- Tan, M. et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of medical virology 80, 1296-1301 (2008).
- Bucardo, F. et al. Genetic susceptibility to symptomatic norovirus infection in Nicaragua. Journal of medical virology 81, 728-735 (2009).
- Le Guyader, F. S. et al. Comprehensive analysis of a norovirus-associated gastroenteritis outbreak, from the environment to the consumer. Journal of clinical microbiology 48, 915-920 (2010).
- Nordgren, J., Kindberg, E., Lindgren, P. E., Matussek, A. & Svensson, L. Norovirus gastroenteritis outbreak with a secretor- independent susceptibility pattern, Sweden. Emerg Infect Dis 16, 81-87 (2010).
- Thorven, M. et al. A homozygous nonsense mutation (428G--> A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol 79, 15351-15355 (2005).
- Tamura, M., Natori, K., Kobayashi, M., Miyamura, T. & Takeda, N. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 78, 3817-3826 (2004).
- Tamura, M., Natori, K., Kobayashi, M., Miyamura, T. & Takeda, N. Interaction of recombinant norwalk virus particles with the 105-kilodalton cellular binding protein, a candidate receptor molecule for virus attachment. J Virol 74, 11589-11597 (2000).
- Rydell, G. E. et al. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 19, 309-320 (2009).
- Han, L. et al. Gangliosides are Ligands for Human Noroviruses. Journal of the American Chemical Society 136, 12631-12637 (2014).
- Varki, N. M. & Varki, A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Laboratory investigation; a journal of technical methods and pathology 87, 851-857 (2007).
- Nicholls, J. M., Chan, R. W., Russell, R. J., Air, G. M. & Peiris, J. S. Evolving complexities of influenza virus and its receptors. Trends Microbiol 16, 149-157 (2008).
- Imai, M. & Kawaoka, Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Current opinion in virology 2, 160-167 (2012).
- Iorio, R. M. & Mahon, P. J. Paramyxoviruses: different receptors -different mechanisms of fusion. Trends Microbiol 16, 135-137 (2008).
- Reiss, K. et al. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus. PLoS Pathog 8, e1003078 (2012).
- Frierson, J. M. et al. Utilization of sialylated glycans as coreceptors enhances the neurovirulence of serotype 3 reovirus. J Virol 86, 13164-13173 (2012).
- Zocher, G. et al. A sialic Acid binding site in a human picornavirus. PLoS Pathog 10, e1004401 (2014).
- Stuart, A. D. & Brown, T. D. Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. The Journal of general virology 88, 177-186 (2007).
- Kim, D. S. et al. Both alpha2,3-and alpha2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus. PLoS Pathog 10, e1004172 (2014).
- Taube, S. et al. Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83, 4092-4101 (2009).
- Wei, C., Farkas, T., Sestak, K. & Jiang, X. Recovery of infectious virus by transfection of in vitro-generated RNA from tulane calicivirus cDNA. J Virol 82, 11429-11436 (2008).
- Geisler, C. & Jarvis, D. L. Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21, 988-993 (2011).
- Brudner, M. et al. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One 8, e60838 (2013).
- St-Pierre, C. et al. Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J Virol 85, 11742-11751 (2011).
- Farkas, T. et al. GENETIC DIVERSITY AND HISTO-BLOOD GROUP ANTIGEN INTERACTIONS OF RHESUS ENTERIC CALICIVIRUSES. J Virol in press (2010).
- Tan, M. & Jiang, X. Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 16, e5 (2014).