Academia.eduAcademia.edu

Outline

Digital mathematical maps - results from iterative research cycles

2022, HAL (Le Centre pour la Communication Scientifique Directe)

Abstract

In this paper, we provide results from the design-based research and development process of a digital didactical tool: mathematical maps. We describe in detail the current research cycle, in which the mathematical maps are integrated into a geometry course designed cooperatively by university mathematics teachers and researchers in mathematics education from different universities. The results of the evaluation affirm the (perceived) usefulness of individual functionalities of the digital tool but also point to suggestions for design improvement. Furthermore, the use of the map within the geometry course seems to promote favorable beliefs regarding the nature of mathematics.

References (15)

  1. Bakker, A. (2018). Design Research in Education. Routledge. https://doi.org/10.4324/9780203701010
  2. Brandl, M. (2009). The vibrating string -an initial problem for modern mathematics; historical and didactical aspects. In I. Witzke (Ed.), Mathematical Practice and Development throughout History: Proceedings of the 18th Novembertagung on the History, Philosophy and Didactics of Mathematics. Logos Verlag, 95-114.
  3. Datzmann, A., & Brandl, M. (2019). Evaluation of a connecting teaching format in teacher education. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME 11, February 06-10, 2019) (pp. 2462-2463). Freudenthal Institute, Utrecht University and ERME.
  4. Datzmann, A., Przybilla, J., Brandl, M., & Kaiser, T. (2020). New Teaching Techniques aiming to connect School and University Mathematics in Geometry. In A. Donevska-Todorova, et al. (Eds.): Mathematics Education in the Digital Age (MEDA) Proceedings 2020 (pp. 37-44), Sep 2020, Linz, Austria.
  5. Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. (PhD), Massachusetts Institute of Technology, Cambridge, MA.
  6. Felbrich, A., Müller, C., & Blömeke, S. (2008). Epistomological Beliefs Concerning the Nature of Mathematics among Teacher Educators and Teacher Education Students in Mathematics. ZDM Mathematics Education, 40, 763-776. https://doi.org/10.1007/s11858-008-0153-5
  7. Gueudet, G., Bosch, M., diSessa, A., Kwon, O.-N., & Verschaffel, L. (2016). Transitions in mathematics education. Springer. https://doi.org/10.1007/978-3-319-31622-2
  8. Klein, F. (2016). Elementary Mathematics from higher standpoint. Volume I: Arithmetic Algebra Analysis. (G. Schubring, Trans.) Springer. (Original work published 1924). https://doi.org/10.1007/978-3-662-49442-4
  9. Przybilla, J., Brandl, M., Vinerean, M., & Liljekvist, Y. (2021). Interactive Mathematical Maps -A contextualized way of meaningful Learning. In G. A. Nortvedt et al. (Eds.), Bringing Nordic mathematics education into the future. Preceedings of NORMA 20. The ninth Nordic Conference on Mathematics Education. Oslo, 2021 (pp. 209-216). SMDF.
  10. Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta- analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers & Education, 128, 13-35. https://doi.org/10.1016/j.compedu.2018.09.009
  11. Schwarz, A.-M., Brandl, M., Kaiser, T., & Datzmann, A. (2017): Interactive mathematical maps for de-fragmentation. In T. Dooley, G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1-5, 2017) (pp. 2292-2293). DCU Institute of Education and ERME.
  12. Tall, D. (2008). The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal, 20 (2), 5-24. https://doi.org/10.1007/BF03217474
  13. Thomas, M. O. J., De Freitas Druck, I., Huillet, D., Ju, M.-K., Nardi, E., Rasmussen, C., & Xie, J. (2015). Key mathematical concepts in the transition from secondary to university. In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 265- 284). Springer. https://doi.org/10.1007/978-3-319-12688-3_18
  14. Winsløw, C., & Grønbaek, N. (2013). Klein's double discontinuity revisited: contemporary challenges for universities preparing teachers to teach calculus. Recherches en Didactique des Mathématiques, 34(1), 59-86.
  15. Wood, D., Bruner, J., & Ross, G. (1976). The Role of Tutoring in Problem-Solving. Journal of Child Psychology and Psychiatry, 17, 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x