Probabilistic feature models for unfolding
1991
Abstract
een wetenschappelijke proeve op het gebied van de sociale wetenschappen, in het bijzonder de psychologie Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het college van decanen in het openbaar te verdedigen op maandag 4 november 1991, des namiddags te 3.30 uur door
References (74)
- References American Psychiatric Association (1987). Diagnostic and statistical manual of mental disorders (3rd ed., rev.). Washington, DC: Author.
- American Psychological Association (1981). Ethical principles of psychologists (revised). American Psychologist, 36, 633-638.
- Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude. Applied Psychological Measurement, /2,33-51.
- Andrich, D. (1989). A probabilistic IRT model for unfolding preference data. Applied Psychological Measurement, 13, 193-216.
- Barlow, R.E., Bartholomew, D.J., Bremner, J.M., & Brunk, H.D. (1972). Statistical inference under order restrictions. London: Wiley.
- Bechtel, G.G. (1968). Folded and unfolded scaling from preferential paired comparisons. Journal of Mathematical Psychology, 5,333-357.
- Bezembinder, Th., & Bossuyt, P.M.M. (1989). Strong stochastic transitivity in a multidimensional probabilistic unfolding model. Journal of Mathematical Psychology, 33, 496-499.
- Bossuyt, P. (1990). A comparison of probabilistic unfolding theories for paired comparisons data. Berlin: Springer.
- Bossuyt, P.M., & Roskam, E.E. (1987). Eindimensionale maximum-likelihood-Entfaltung für ein probabilistisches Modell ohne Annahmen über Verteilung. Zeitschrift für Sozialpsychologie, 18, 282-294.
- Bossuyt, P.M., & Roskam, Edw. E. (1989). Maximum likelihood unidimensional unfolding for a probabilistic model without distributional assumptions. In G. de Soete, H. Feger, & K.C. Klauer (Eds.), New developments in psychological choice modeling (pp. 77-98). Amsterdam: North-Holland.
- Buneman, P. (1971). The recovery of trees from measures of dissimilarity. In F.R. Hodson, D.G. Kendall, & P. Tautu (Eds.), Mathematics in the archaeological and historical sciences (pp. 387-395). Edinburgh: Edinburgh University Press.
- Busemeyer, J.R.. Forsyth, В., & Nozawa, G. (1988). Comparisons of elimination by aspects and suppression of aspects choice models based on choice response time. Journal of Mathematical Psychology, 32, 341-349.
- Bush, R.R., & Mosteller, F. (1951). A model for stimulus generalization and discrimination. Psychological Review, 58, 413-423.
- Candel, M. (1987). An additive random feature model for unfolding (Internal report 87-MA-05). Nijmegen: University of Nijmegen, Department of Mathematical Psychology.
- Candel, M.J. (1990). The additive random feature model for unfolding: Predictions for linear and quasi-linear trees. Manuscript submitted for publication.
- Candel, M.J. (in press). A feature model for unfolding and experimental results. In J.-C. Falmagne & J.-P. Doignon (Eds.), Mathematical psychology : Current developments. New York: Springer.
- Carroll, J.D. (1976). Spatial, non-spatial and hybrid models for scaling. Psychometrika, 41, 439-463.
- Carroll, J.D., DeSarbo, W.S., & De Soete, G. (1988). Stochastic Tree UNfolding (STUN) models: Theory and application. In H.H. Bock (Ed.), Classification and related methods of data analysis (pp. 421-430). Amsterdam: North-Holland.
- Carroll, J.D., DeSarbo, W.S., & De Soete, G. (1989). Two classes of stochastic tree unfolding models. In G. de Soete, H. Feger, & K.C. Klauer (Eds.), New developments in psychological choice modeling (pp. 161-176). Amsterdam: North-Holland.
- Carroll, J.D., & De Soete, G. (1990). Fitting a quasi-poisson case of the GSTUN (General Stochastic Tree UNfolding) model and some extensions. In M. Schader & W. Gaul (Eds.), Knowledge, data and computer-assisted decisions (pp. 93-102). Berlin: Springer.
- Chen, W.-K. (1976). Applied graph theory: Graphs and electrical networks. Amsterdam: North-Holland.
- Colonius, H., & Schulze, H.H. (1979). Tree structures for proximity data. British Journal of Mathematical and Statistical Psychology, 34,167-180.
- Coombs, C.H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57,145-158.
- Coombs, C.H. (1958). On the use of inconsistency of preferences In psychological measurement. Journal of Experimental Psychology, 55,1-7.
- Coombs, C.H. (1964). A theory of data. New York: Wiley.
- Croon, M. (1983). A comparison of statistical unfolding models. Unpublished manuscript, University of Brabant, Faculty of Social Sciences, Tilburg.
- Cunningham, J.P. (1978). Free trees and bidirectional trees as representations of psychological distance. Journal of Mathematical Psychology, 17,165-188.
- De Soete, G. (1983). On some properties of dissimilarities satisfying Pestle's symmetric set difference model. Psychologica Belgica, 13,135-139.
- De Soete, G., Carroll, J.D., & DeSarbo, W.S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology, 30,28-41.
- Edged, S.E., & Geisler, W.S. (1980). A set-theoretic random utility model for choice behavior. Journal of Mathematical Psychology, 21, 265-278.
- Estes, W.K. (1950). Towards a statistical theory of learning. Psychological Review, 57, 94-107.
- Falmagne, J.C. (1965). Stochastic models for choice RT with applications to experimental results. Journal of Mathematical Psychology, 2, 77-124.
- Falmagne, J.C. (1981). On a recurrent misuse of a classical functional equation result. Journal of Mathematical Psychology, 23,190-193.
- Fishburn, P.C. (1973). Binary choice probabilities: On the varieties of stochastic transitivity. Journal of Mathematical Psychology, 10,327-352.
- Gati, I., & Tversky, Α. (19Θ2). Representations of qualitative and quantitative dimensions. Journal of Experimental Psychology : Human Perception and Performance, 8, 325-340.
- Gati, I., & Tversky, A. (1984). Weighting common versus distinctive features in perceptual and conceptual judgments. Cognitive Psychology, 16, 341 -370.
- Greenberg, M.G. (1965). A method of successive cumulations for the scaling of pair-comparison preference judgments. Psychometrika, 30,441-448.
- Halff, H.M. (1976). Choice theories for differentially comparable alternatives. Journal of Mathematical Psychology, 14, 244-246.
- Iverson, G.J., & Harp, S.A. (1987). A conditional likelihood ratio test for order restrictions in exponentional families. Mathematical Social Sciences, 74,141-159.
- Jamieson, D.G., & Petrusic, W.M. (1977). Preference and time to choose. Organizational Behavior and Human Performance, 19, 56-67.
- Jansen, P.G.W. (1981). Spezifisch objective Messung im Falle nicht-monotoner Einstellungsitems. Zeitschrift für Sozialpsychologie, 12,169-185.
- Luce, R.D., & Suppes, P. (1965). Preference, utility and subjective probability. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 3, pp. 249-410). New York: Wiley.
- Marley, A.A.J. (1981). Multivariate stochastic processes compatible with aspects models of similarity and choice. Psychometrika, 46,421-428.
- Marshall, C.W. (1971). Applied graph theory. New York: Wiley.
- Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the theory of statistics (3rd. ed.). Tokyo: McGraw-Hill.
- Petrusic, W.M. (1966a). The relationship between stochastic and temporal dominance under an accuracy set. Psychonomie Science, 5, 373-374.
- Petrusic, W.M. (1966b). Latency, stochastic dominance, and laterality effects. Psychonomie Science, 5,375-376.
- Petrusic, W.M., & Jamieson, D.G. (1978). Relation between probability of preferential choice and time to choose changes with practice. Journal of Experimental Psychology : Human Perception and Performance, 4, 471-482.
- Rabbitt, P.M.A., & Vyas, S.M. (1970). An elementary preliminary taxonomy for some errors in laboratory choice RT tasks. Acta Psychologica, 33,56-76.
- Ramsay, J.O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42,241 -266.
- Ramsay, J.O. (1980). The joint analysis of direct ratings, pairwise preferences and dissimilarities. Psychometrika, 45,149-166.
- Ratcliff, R. (1979). Group RT distributions and an analysis of distribution statistics. Psychological Bulletin, 86,446-461.
- Restie, F. (1959). A metric and an ordering on sets. Psychometrika, 24, 207-220.
- Restie, F. (1961 ). The psychology of judgement and choice : A theoretical essay. New York: Wiley.
- Ritov, I., Gali, I., & Tversky, A. (1990). Differential weighting of common and distinctive components. Journal of Experimental Psychology : General, 119,30-41.
- Robertson, T., & Warrack, G. (1985). An application of order restricted inference methodology to a problem in psychiatry. Psychometrika, 50, 421-427.
- Robertson, T., & Wegman, E.J. (1978). Likelihood ratio tests for order restrictions in exponential families. The Annals of Statistics, 6, 485-505.
- Robertson, T., Wright, F.T., & Dykstra, R.L. (1988). Order restricted statistical inference. Chichester: Wiley.
- Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42,319-347.
- Schönemann, P.H., & Wang, M.-M. (1972). An individual difference model for the multidimensional analysis of preference data. Psychometrika, 37, 275-309.
- Sixtl, F. (1973). Probabilistic unfolding. Psychometrika, 38,235-248.
- Strauss, D. (1981). Choice by features: An extension of Luce's choice model to account for similarities. British Journal of Mathematical and Statistical Psychology, 34, 50-61.
- Suppes, P., Krantz, D., Luce, R.D., & Tversky, A. (1989). Foundations of measurement : Geometrical, treshold and probability representations (Vol. 2). New York: Academic Press.
- Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273-286.
- Townsend, J.T., & Ashby, F.G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: University Press.
- Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31 -48.
- Tversky, A. (1972a). Elimination by aspects : A theory of choice. Psychological Review, 79, 281-299.
- Tversky, A. (1972b). Choice by elimination. Journal of Mathematical Psychology, 9, 341-367.
- Tversky, A. (1977). Features of similarity. Psychological Review, 84,327-352.
- Tversky, Α., & Gati, I. (1978). Studies of similarity. In E. Rosch & B.B. Lloyd (Eds.), Cognition and categorization (pp. 79-98). Hillsdale, N.J.: Erlbaum.
- Tversky, Α., & Gati, I. (1982). Similarity, separability and the triangle inequality. Psychological Review, 89,123-154.
- Tversky, Α., & Sattath, S. (1979). Preference trees. Psychological Review, 86, 542-573.
- Wang, M.-M., Schönemann, P.H., & Rusk, J.G. (1975). A conjugate gradient algorithm for the multidimensional analysis of preference data. Multivariate Behavioral Research, 10, 45-99.
- Zinnes, J.L., & Griggs, R.A. (1974). Probabilistic multidimensional unfolding analysis. Psychometrika, 39,327-350.