Academia.eduAcademia.edu

Outline

Control of the socio-economic systems using herding interactions

2014, Physica D: Nonlinear Phenomena

Abstract

Collective behavior of the complex socio-economic systems is heavily influenced by the herding, group, behavior of individuals. The importance of the herding behavior may enable the control of the collective behavior of the individuals. In this contribution we consider a simple agent-based herding model modified to include agents with controlled state. We show that in certain case even the smallest fixed number of the controlled agents might be enough to control the behavior of a very large system.

References (40)

  1. M. Waldrop, Complexity: The emerging order at the edge of order and chaos, Simon and Schuster, New York, 1992.
  2. G. Akerlof, J. Shiller, Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism, Princeton University Press, 2009.
  3. J. P. Bouchaud, Crises and collective socio-economic phenomena: Simple models and challenges, Journal of Statistical Physics 151 (2013) 567-606.
  4. A. Kirman, Complex Economics: Individual and Collective Rationality, Routledge, 2010.
  5. R. Axelrod, Advancing the art of simulation in the social sciences, Complexity 3 (1997) 16-32.
  6. J. P. Bouchaud, Economics needs a scientific revolution, Nature 455 (2008) 1181.
  7. R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, J. Kertesz, V. Loreto, S. Moat, J.-P. Nadal, A. Sanchez, A. Nowak, A. Flache, M. San Miguel, D. Helbing, Manifesto of computational social science, European Physics Journal Special Topics 214 (2012) 325-346.
  8. M. Cristelli, L. Pietronero, A. Zaccaria, Critical overview of agent-based models for eco- nomics, in: F. Mallnace, H. E. Stanley (Eds.), Proceedings of the School of Physics "E. Fermi", Course CLXXVI, SIF-IOS, Bologna-Amsterdam, 2012, pp. 235 -282.
  9. J. D. Farmer, M. Gallegati, C. Hommes, A. Kirman, P. Ormerod, S. Cincotti, A. Sanchez, D. Helbing, A complex systems approach to constructing better models for managing financial markets and the economy, European Physics Journal Special Topics 214 (2012) 295-324.
  10. S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kan- telhardt, J. Kertesz, S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon, Challenges in network science: Applications to infrastructures, climate, social systems and economics, European Physics Journal Special Topics 214 (2012) 273-293.
  11. V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Minimal agent based model for financial markets i: Origin and self-organization of stylized facts, European Physics Journal B 67 (2009) 385-397.
  12. V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Minimal agent based model for financial markets ii: Statistical properties of the linear and multiplicative dynamics, European Physics Journal B 67 (2009) 399-417.
  13. A. Chakraborti, I. M. Toke, M. Patriarca, F. Abergel, Econophysics review: Ii. agent-based models, Quantitative Finance 7 (2011) 1013-1041.
  14. L. Feng, B. Li, B. Podobnik, T. Preis, H. E. Stanley, Linking agent-based models and stochastic models of financial markets, Proceedings of the National Academy of Sciences of the United States of America 22 (2012) 8388-8393.
  15. R. Frederick, Agents of influence, Proceedings of the National Academy of Sciences of the United States of America 110 (2013) 3703-3705.
  16. T. Kaizoji, Statistical properties of absolute log-returns and a stochastic model of stock markets with heterogeneous agents, Vol. 550 of Lecture Notes in Economics and Mathe- matical Systems, Springer-Verlag, 2005, pp. 237-248.
  17. A. Kononovicius, V. Gontis, Agent based reasoning for the non-linear stochastic models of long-range memory, Physica A 391 (2012) 1309-1314.
  18. R. Lye, J. P. L. Tan, S. A. Cheong, Understanding agent-based models of financial markets: A bottomup approach based on order parameters and phase diagrams, Physica A 391 (2012) 5521-5531.
  19. T. Lux, M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature 397 (1999) 498-500.
  20. J. Ruseckas, B. Kaulakys, V. Gontis, Herding model and 1/f noise, EPL 96 (2011) 60007.
  21. J. R. G. Dyer, A. Johansson, D. Helbing, I. D. Couzin, J. Krause, Leadership, consensus decision making and collective behaviour in humans, Phylosophical Transactions of the Royal Society B 364 (2009) 781-789.
  22. J. Krause, A. F. T. Winfield, J. L. Deneubourg, Interactive robots in experimental biology, Trends in Ecology and Evolution 26 (2011) 369-375.
  23. F. Schweitzer, P. Mavrodiev, C. J. Tessone, How can social herding enhance cooperation?, CoRR (2012) abs/1211.1188.
  24. A. P. Kirman, Ants, rationality and recruitment, Quarterly Journal of Economics 108 (1993) 137-156.
  25. C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Reviews of Modern Physics 81 (2009) 591-646.
  26. S. Alfarano, T. Lux, F. Wagner, Estimation of agent-based models: The case of an asym- metric herding model, Computational Economics 26 (2005) 19-49.
  27. S. Alfarano, T. Lux, F. Wagner, Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach, Journal of Economic Dynamics and Control 32 (2008) 101-136.
  28. J. M. Pasteels, J. L. Deneubourg, S. Goss, Self-organization mechanisms in ant societies (i): Trail recruitment to newly discovered food sources, in: J. M. Pasteels, J. L. Deneubourg (Eds.), From Individual to Collective Behaviour in Social Insects, Birkhauser, Basel, 1987, pp. 155-175.
  29. J. M. Pasteels, J. L. Deneubourg, S. Goss, Self-organization mechanisms in ant societies (ii): Learning in foraging and division of labor, in: J. M. Pasteels, J. L. Deneubourg (Eds.), From Individual to Collective Behaviour in Social Insects, Birkhauser, Basel, 1987, pp. 177-196.
  30. G. S. Becker, A note on restaurant pricing and other examples of social influence on price, Journal of Political Economy 99 (1991) 1109-1116.
  31. M. Aoki, H. Yoshikawa, Reconstructing Macroeconomics: A Perspektive from Statistical Physics and Combinatorial Stochastic Processes, Cambridge University Press, 2007.
  32. S. Alfarano, M. Milakovic, Network structure and n-dependence in agent-based herding models, Journal of Economic Dynamics and Control 33 (2009) 78-92.
  33. A. Traulsen, J. C. Claussen, C. Hauert, Stochastic differential equations for evolutionary dynamics with demographic noise and mutations, Physical Review E 85 (2012) 041901.
  34. S. Alfarano, M. Milakovic, M. Raddant, A note on institutional hierarchy and volatility in financial markets, The European Journal of Finance 19 (2013) 449-465.
  35. A. Carro, R. Toral, M. San Miguel, Signal amplification in an agent-based herding model (2013).
  36. C. W. Gardiner, Handbook of stochastic methods, Springer, Berlin, 2009.
  37. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications, 3rd Edition, Springer, 1996.
  38. T. Preis, D. Y. Kenett, H. E. Stanley, D. Helbing, E. Ben-Jacob, Quantifying the behavior of stock correlations under market stress, Scientific Reports 2 (2012) 752.
  39. D. R. Parisi, D. Sornette, D. Helbing, Financial price dynamics and pedestrian counter- flows: A comparison of statistical stylized facts, Physical Review E 87 (2013) 012804.
  40. A. Kononovicius, V. Gontis, Three state herding model of the financial markets, EPL 101 (2013) 28001.