Academia.eduAcademia.edu

Outline

10 Mathematical retroreflectors

2016

Abstract

Retroreflectors are optical devices that reverse the direction of incident beams of light. Here we present a collection of billiard type retroreflectors consisting of four objects; three of them are asymptotically perfect retroreflectors, and the fourth one is a retroreflector which is very close to perfect. Three objects of the collection have recently been discovered and published or submitted for publication. The fourth object notched angle is a new one; a proof of its retroreflectivity is given.

References (15)

  1. P. Bachurin, K. Khanin, J. Marklof and A. Plakhov. Perfect retroreflectors and bil- liard dynamics. Submitted.
  2. K. I. Borg, L. H. Söderholm and H. Essén. Force on a spinning sphere moving in a rarefied gas. Physics of Fluids 15, 736-741 (2003).
  3. L. Bunimovich. Mushrooms and other billiards with divided phase space. Chaos 11, 802-808 (2001).
  4. J. E. Eaton. On spherically symmetric lenses. Trans. IRE Antennas Propag. 4, 66-71 (1952).
  5. P. D. F. Gouveia. Computação de Simetrias Variacionais e Optimização da Re- sistência Aerodinâmica Newtoniana. Ph.D. Thesis, Universidade de Aveiro, Portugal (2007).
  6. P. Gouveia, A. Plakhov and D. Torres. Two-dimensional body of maxi- mum mean resistance. Applied Math. and Computation 215, 37-52 (2009). doi:10.1016/j.amc.2009.04.030
  7. S. G. Ivanov and A. M. Yanshin. Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow. Fluid Dyn. 15, 449 (1980).
  8. K. Moe and M. M. Moe. Gas-surface interactions and satellite drag coefficients. Planet. Space Sci. 53, 793-801 (2005).
  9. I. Newton. Philosophiae naturalis principia mathematica. 1686.
  10. A Plakhov. Billiards in unbounded domains reversing the direction of motion of a particle. Russ. Math. Surv. 61, 179-180 (2006).
  11. A Plakhov. Billiards and two-dimensional problems of optimal resistance. Arch. Ra- tion. Mech. Anal. 194, 349-382 (2009). DOI 10.1007/s00205-008-0137-1.
  12. A. Plakhov and P. Gouveia. Problems of maximal mean resistance on the plane. Nonlinearity 20, 2271-2287 (2007).
  13. A. Plakhov. Scattering in billiards and problems of Newtonian aerodynamics. Russ. Math. Surv. 64, 873-938 (2009).
  14. S. Tabachnikov. Billiards. Paris: Société Mathématique de France (1995).
  15. C.-T. Wang. Free molecular flow over a rotating sphere. AIAA J. 10, 713 (1972).