Ear Decomposition for Pair Comparison Data
2002, Journal of Mathematical Psychology
Abstract
An efficient graph-theoretical decomposition technique is introduced that treats inconsistencies in behavioral data as systematic adaptations rather than random errors. This technique, which is known as ear decomposition, reduces inconsistencies in any binary data set to a basis of directed cycles. Such a basis characterizes the data set in terms of inconsistencies and its size offers an improved measure of internal consistency. In two examples it is illustrated how different implementations of the ear decomposition technique can help to identify choices that are critical for violations of transitivity.
References (65)
- Albert, D., Aschenbrenner, K. M., & Schmalhofer, F. (1989). Cognitive choice processes and the attitude- behavior relation. In U. Upmeyer (Ed.), Attitudes and behavioral decisions (pp. 61-99). New York: Springer-Verlag.
- Armstrong, W. E. (1939). The determinateness of the utility function. Economic Journal, 49, 453-467.
- Aschenbrenner, K. (1981). Efficient sets, decision heuristics, and single-peaked preferences. Journal of Mathematical Psychology, 23, 227-256.
- Barthélemy, J.-P. (1990). Intransitivities of preferences, lexicographic shifts and the transitive dimension of oriented graphs. British Journal of Mathematical and Statistical Psychology, 43, 29-37.
- Bergé, C. (1973). Graphs and hypergraphs. Amsterdam: North-Holland.
- Bermond, J. C., & Thomassen, C. (1981). Cycles on digraphs-a survey. Journal of Graph Theory, 5, 1-43.
- Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 5, 175-192. L. Sommer (Trans.). (1954). Exposition of a new theory on the measurement of risk. Econometrica, 22, 23-36.
- Bezembinder, T. G. G. (1981). Circularity and consistency in paired comparisons. British Journal of Mathematical and Statistical Psychology, 34, 16-37.
- Biggs, N. (1993). Algebraic Graph Theory (2nd ed.). Cambridge, UK: Cambridge University Press.
- Björner, A., Las Vergnas, M., Sturmfels, B., White, N., & Ziegler, G. (1993). Oriented matroids. In Encyclopedia of Mathematics and Its Applications. Cambridge, UK: Cambridge University Press.
- Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen, 46, 481-512.
- Chubb, C. (1986). Collapsing binary data for algebraic multidimensional representation. Journal of Mathematical Psychology, 30, 161-187.
- EAR DECOMPOSITION
- Condorcet, Marquis de (1785). Essai de l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. Paris. Reprint by M.J.A. Caritat (1974). New York: Chelsea.
- Cramer, G. (1728). Correspondence to N. Bernoulli and D. Bernoulli. Referred to in D. Bernoulli (1738). Commentarii Academiae Scientiarum Imperialis Petropolitanae, 5, 175-192.
- Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571-582.
- Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological Bulletin, 81, 95-106.
- Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 575-271.
- Doignon, J.-P. (1995). A model for the emergence of preference relations (Well-graded families of semiorders). Paper presented on the 26th European Mathematical Psychology Group Meeting in Regensburg, Germany.
- Doignon, J.-P., Ducamp, A., & Falmagne, J.-C. (1984). On realizable biorders and the biorder dimension of a relation. Journal of Mathematical Psychology, 28, 73-109.
- Doignon, J.-P., & Falmagne, J.-C. (1997). Well-graded families of relations. Discrete Mathematics, 173, 35-44.
- Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51, 380-417.
- Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics, 75, 643-669.
- Fishburn, P. C. (1982). Nontransitive measurable utility. Journal of Mathematical Psychology, 26, 31-67.
- Fishburn, P. C. (1991). Nontransitive preference in decision theory. Journal of Risk and Uncertainty, 4, 113-134.
- Franklin, B. (1772). Letter to Joseph Priestley. Printed 1987 in Writings, pp. 877-878. New York: The Library of America.
- Franzblau, D. S. (1999). Ear decomposition with bounds on ear length. Information Processing Letters, 70, 245-249.
- Galluccio, A., & Loebl, M. (1996). (P, Q)-odd digraphs. Journal of Graph Theory, 23(2), 175-184.
- Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650-669.
- Goldberg, M., & Moon, J. W. (1971). Arc mappings and tournament isomorphisms. Journal of the London Mathematical Society, 3(2), 378-384.
- Grether, D. M., & Plott, C. R. (1979). Economic theory of choice and the preference reversal phenome- non. American Economic Review, 69, 623-638.
- Grötschel, M., Lova ´sz, L., & Schrijver, A. (1993). Geometric algorithms and combinatorial optimization (2nd ed.). Algorithms and Combinatorics (Vol. 2). Berlin: Springer-Verlag.
- Huber, O. (1979). Nontransitive multidimensional preferences: Theoretical analysis of a model. Theory and Decision, 10, 147-165.
- Huber, O., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of Consumer Research, 9, 90-98.
- Jünger, M. (1985). Polyhedral combinatorics and the acyclic subgraph problem. Berlin: Heldermann Verlag.
- Jungnickel, D. (1999). Graphs, networks and algorithms, In Algorithms and Computation in Mathematics (Vol. 4). Berlin: Springer-Verlag.
- Kahneman, D., & Tversky, A. (1979). Prospect theory. Analysis of decision under risk. Econometrica, 47, 263-291.
- Kendall, M. G., & Babington-Smith, B. (1940). On the method of paired comparisons. Biometrika, 33, 239-251.
- Koppen, M. G. M. (1987). On finding the bidimension of a relation. Journal of Mathematical Psychol- ogy, 31, 155-178.
- Lages, M. (1998). Directed ear decomposition for pair comparison data. Paper presented at the 31st Annual Meeting of the Society for Mathematical Psychology (SMP), Nashville, TN.
- Lages, M. (1999). Algebraic decomposition of individual choice behavior, In Materialien aus der Bildungsforschung (Vol. 63). Berlin: Max Planck Institute for Human Development. Ph.D. thesis (1997) at University of Heidelberg.
- Lichtenstein, S., & Slovic, P. (1971). Reversal of preferences between bids and choices in gambling decisions. Journal of Experimental Psychology, 89, 46-55.
- Lova ´sz, L., & Plummer, M. D. (1986). Matching theory. North-Holland: Elsevier.
- Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, 24, 178-191.
- Luce, R. D. (1990). Rational versus plausible accounting equivalences in preference judgments. Psychological Science, 1(4), 225-234.
- Luce, R. D. (1996). The ongoing dialog between empirical science and measurement theory. Journal of Mathematical Psychology, 40, 78-98.
- May, K. O. (1954). Intransitivity, utility, and the aggregation of preference patterns. Econmetrica, 22, 1-13.
- Moon, J. W. (1968). Topics on tournaments. New York: Holt, Rinehart, and Winston.
- Neumann, J. von, & Morgenstern, O. (1944). Theory of games and economic behavior (2nd ed., 1947; 3rd ed., 1953). Princeton: Princeton Univ. Press.
- Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Decision Processes, 16, 366-387.
- Roberts, F. S. (1979). Measurement theory with applications to decision making, utility and the social sciences. In G.-C. Rota (Ed.), Encyclopedia of mathematics and its applications: Vol. 7, Mathematics and the social sciences. Reading, MA: Addison-Wesley.
- Rumelhart, D. L., & Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models. Journal of Mathematical Psychology, 8, 370-381.
- Savage, L. J. (1954). The foundations of statistics. New York: Wiley.
- Schmalhofer, F., Albert, D., Aschenbrenner, K. M., & Gertzen, H. (1986). Process traces of binary choices: Evidence for selective and adaptive decision heuristics. The Quarterly Journal of Experimental Psychology A, 38, 59-76.
- Schrijver, A. (1986). Theory of Linear Programming and Integer Programming. New York: John Wiley & Sons.
- Simon, H. A. (1956). Rational choice and the structure of environments. Psychological Review, 63, 129-138.
- Simon, H. A. (1959). Theories of decision making in economics and behavioral science. American Eco- nomic Review, 49, 253-283.
- Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika, 48, 303-312.
- Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677-680.
- Thomassen, C. (1989). Whitney's 2-switching theorem, cycle spaces, and arc mappings of directed graphs. Journal of Combinatorial Theory, B, 46, 257-291.
- Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31-45.
- Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453-458.
- Wedell, D. H. (1991). Distinguishing among models of contextually induced preference reversals. Journal of Experimental Psychology: Learning, Memory and Cognition, 17, 767-778.
- Whitney, H. (1932). Non-separable and planar graphs. Transactions of the American Mathematical Society, 34, 339-362.
- Whitney, H. (1933). 2-isomorphic graphs. American Journal of Mathematics, 55, 245-254. Received: December 11, 1998; published online August 8, 2001 EAR DECOMPOSITION