Well-covered graphs and greedoids
2008, … of the fourteenth symposium on Computing …
Abstract
G is a well-covered graph provided all its maximal stable sets are of the same size (Plummer, 1970). S is a local maximum stable set of G, and we denote by S∈ Ψ (G), if S is a maximum stable set of the subgraph induced by S∪ N (S), where N (S) is the neighborhood of S.
References (30)
- Björner, A. and Ziegler, G. M. (1992), Introduc- tion to greedoids, in N. White (ed.), Matroid Ap- plications, 284-357, Cambridge University Press.
- Campbell, S. R., Ellingham, M. N. and Royle, G. F. (1993), A characterization of well-covered cu- bic graphs, J. Combin. Math. Combin. Comput. 13 pp. 193-212.
- Y. Caro, Y., M. N. Ellingham, M. N. and Ramey, J. E. (1998), Local structure when all maximal independent sets have equal weight, SIAM Jour- nal of Discrete Mathematics 11 pp. 644-654.
- Chvátal, V. and Slater, P. J. (1993), A note on well-covered graphs, in 'Quo Vadis, Graph Theory?', Annals of Discrete Math. 55, North- Holland, Amsterdam, pp. 179-182.
- Edmonds, J. (1971), Matroid and the greedy al- gorithm, Math. Programming 1, pp. 127-113.
- Favaron, O. (1982), Very well-covered graphs, Discrete Mathematics 42 pp. 177-187.
- Finbow, A., Hartnell, B. and Nowakowski, R. J. (1993), A characterization of well-covered graphs of girth 5 or greater, Journal of Combinatorial Theory, Ser B 57 pp. 44-68.
- Finbow, A., Hartnell, B. and Nowakowski, R. J. (1994), A characterization of well-covered graphs that contain neither 4-nor 5-cycles, Journal of Graph Theory 18 pp. 713-721.
- Hartnell, B., Plummer, M. D. (1996), On 4- connected claw-free well-covered graphs, Dis- crete Applied Mathematics 64 pp. 57-65.
- Hedetniemi, S. T. and Laskar, R. (1984), Con- nected domination in graphs, in Graph Theory and Combinatorics, Eds. B. Bollobas, Academic Press, London, pp. 209-218.
- Korte, B., Lovász, L. and Schrader, R. (1991), Greedoids, Springer-Verlag, Berlin.
- Levit, V. E. and Mandrescu, E. (1998), Well- covered and König-Egerváry graphs, Congressus Numerantium 130 pp. 209-218.
- Levit, V. E. and Mandrescu, E. (1999), Well- covered trees, Congressus Numerantium 139 pp. 101-112.
- Levit, V. E. and Mandrescu, E. (2001), Uni- cycle bipartite graphs with only uniquely re- stricted maximum matchings, in C.S. Calude, M. J. Dinneen and S. Sburlan eds. 'Proceedings of the Third International Conference on Combina- torics, Computability and Logic, (DMTCS'1)', Springer, pp. 151-158.
- Levit, V. E. and Mandrescu, E. (2002), A new greedoid: the family of local maximum stable sets of a forest, Discrete Applied Mathematics 124 pp. 91-101.
- Levit, V. E. and Mandrescu, E. (2003), Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings, Dis- crete Applied Mathematics 132 pp. 163-174.
- Levit, V. E. and Mandrescu, E. (2005), Unicycle graphs and uniquely restricted maximum match- ings, Electronic Notes in Discrete Mathematics, 22 pp. 261265.
- Levit, V. E. and Mandrescu, E. (2007a), Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids, Discrete Applied Mathematics, doi: 10.1016/j.dam.2007.05.039 (in press).
- Levit, V. E. and Mandrescu, E. (2007b), Some Structural Properties of Very Well-Covered Graphs, Congressus Numerantium (accepted).
- Nemhauser, G. L. and Trotter, E., Jr. (1975), Vertex packings: structural properties and algo- rithms, Mathematical Programming 8 pp. 232- 248.
- Plummer, M. D. (1970), Some covering concepts in graphs, Journal of Combinatorial Theory 8 pp. 91-98.
- Plummer, M. D. (1993), Well-covered graphs : a survey, Quaestiones Mathematicae 16 pp. 253- 287.
- E. Prisner, E., Topp, J. and P. D. Vestergaard, P. D. (1996), Well-covered simplicial, chordal, and circular arc graphs, Journal of Graph Theory 21 pp. 113-119.
- Ravindra, G. (1977), Well-covered graphs, J. Combin. Inform. System Sci. 2 pp. 20-21.
- Sankaranarayana, R., Stewart, L. K. (1992), Complexity results for well-covered graphs, Net- works 22 (3) pp. 247-262.
- D. Tankus, D. and Tarsi, M. (1996), Well- covered claw-free graphs, Journal of Combina- torial Theory Ser. B 66 pp. 293-302.
- D. Tankus, D. and Tarsi, M. (1997), The struc- ture of well-covered graphs and the complexity of their recognition problems, Journal of Combi- natorial Theory Ser. B 69 pp. 230-233.
- Topp, J. and Volkmann, L. (1990), Well-covered and well-dominated block graphs and unicyclic graphs, Mathematica Panonica 1/2 pp. 55-66.
- Whitney, H. (1935), On the abstract properties of linear independence, Amer. J. Math. 57 pp. 509-533.
- Zverovich, I. E. (2004), Weighted well-covered graphs and complexity questions, Moscow Math- ematical Journal 4 pp. 523-528.