Academia.eduAcademia.edu

Outline

The Impact of AI in COVID-19: AI-Powered Diagnostics, Epidemiology

2021, IJMRSET

Abstract

The COVID-19 epidemic commenced in December 2019 in Wuhan, China. In contrast to the Spanish flu pandemic of 1918, the death rate from COVID-19 is merely 5%. The condition is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 strain. In reaction to this catastrophe, several nations have implemented quarantines to mitigate the worldwide dissemination of the COVID-19 virus. COVID-19 vaccines will not be accessible until December 2020. A dependable identification method is essential for the early detection of COVID-19 to preserve humanity. Recent studies indicate that Chest X-ray (CXR) imaging is the most expedient way for diagnosing and classifying COVID-19, and it is also more reliable than Reverse Transcription Polymerase Chain Reaction (RT-PCR) as it yields critical information regarding the coronavirus. Clinical practitioners may initiate treatment at the preliminary stage based on this CXR diagnosis. This article proposes methods for predicting the spread of the COVID-19 pandemic utilizing GLCM-CNN, a deep learning system.

References (22)

  1. Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.;Wang,W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data- driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214-217. [
  2. Wang, L., Lin, Z. Q., & Wong, A. (2019). "COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images." Scientific Reports, 10(1), 19549.DOI: 10.1038/s41598-020- 76523-9
  3. Rajpurkar, P., Irvin, J., & Chen, E. (2019). "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNet algorithm to practicing radiologists." PLOS Medicine, 16(11), e1002686.DOI: 10.1371/journal.pmed.1002686
  4. Hemdan, E. E. D., Shouman, M. A., & Karar, M. E. (2020). "COVIDX-Net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images." Computer Methods and Programs in Biomedicine, 196, 105032.DOI: 10.1016/j.cmpb.2020.105032
  5. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinicalcharacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507-513.
  6. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265-269.
  7. Guan,W.-J.; Ni, Z.-Y.; Hu, Y.; Liang,W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708-1720.
  8. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061-1069.
  9. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470-473
  10. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727-733.
  11. Wang, S.; Zha, Y.; Li, W.; Wu, Q.; Li, X.; Niu, M.; Wang, M.; Qiu, X.; Li, H.; Yu, H.; et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur. Respir. J. 2020, 56.
  12. Thenault, R.; Kaulanjan, K.; Darde, T.; Rioux-Leclercq, N.; Bensalah, K.; Mermier, M.; Khene, Z.-E.; Peyronnet, B.; Shariat, S.; Pradere, B.; et al. The Application of Artificial Intelligence in Prostate Cancer Management-What Improvements Can Be Expected? A Systematic Review. Appl. Sci. 2020, 10, 6428.
  13. Yassin, N.I.; Omran, S.; El Houby, E.M.; Allam, H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Progr. Biomed. 2018, 156, 25-45.
  14. Das, N.N.; Kumar, N.; Kaur, M.; Kumar, V.; Singh, D. Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM 2020.
  15. Kukar, M.; Gunˇcar, G.; Vovko, T.; Podnar, S.; ˇ Cernelˇc, P.; Brvar, M.; Zalaznik, M.; Notar, M.; Moškon, S.; Notar, M. COVID-19 diagnosis by routine blood tests using machine learning. arXiv 2020, arXiv:2006.03476.
  16. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665-132676.
  17. I. Al-Turaiki, M. Alshahrani, and T. Almutairi, "Building predictive models for MERS-CoV infections using data mining techniques," J. Infect. Public Health, vol. 9, no. 6, pp. 744-748, 2016.
  18. S. Choi, J. Lee, M. G. Kang, H. Min, Y. S. Chang, and S. Yoon, "Large-scale machine learning of media outlets for understanding public reactions to nation-wide viral infection outbreaks," Methods, vol. 129, pp. 50-59, 2017.
  19. M. Abdullah, M. S. Altheyab, A. M. A. Lattas, and W. F. Algashmari, "MERS-CoV disease estimation (MDE) A study to estimate a MERS-CoV by classification algorithms," in Communication, Management and Information Technology Proceedings of the International Conference on Communication, Management and Information Technology, ICCMIT 2016, 2017, pp. 633-638.
  20. S. Jang, S. Lee, S. M. Choi, J. Seo, H. Choi, and T. Yoon, "Comparison between SARS CoV and MERS CoV Using apriori algorithm, decision tree, SVM," in MATEC Web Conf., 2016, vol. 49, p. 8001.
  21. R. Sandhu, S. K. Sood, and G. Kaur, "An intelligent system for predicting and preventing MERS-CoV infection outbreak," J. Supercomput., vol. 72, no. 8, pp. 3033-3056, 2016.
  22. J. B. Long and J. M. Ehrenfeld, "TheRoleofAugmented Intelligence (AI) in Detecting and Preventing the Spread of Novel Coronavirus," J. Med. Syst., vol. 44, no. 3, p. 59, 2020.