Academia.eduAcademia.edu

Outline

Boundary Conditions

2015

Abstract

We study the asymptotic behavior of an optimal distributed control problem where the state is given by the heat equation with mixed boundary conditions. The parameter α intervenes in the Robin boundary condition and it represents the heat transfer coefficient on a portion Γ 1 of the boundary of a given regular n-dimensional domain. For each α, the distributed parabolic control problem optimizes the internal energy g. It is proven that the optimal control ĝα with optimal state u ĝαα and optimal adjoint state p ĝαα are convergent as α → ∞ (in norm of a suitable Sobolev parabolic space) to ĝ, u ĝ and p ĝ , respectively, where the limit problem has Dirichlet (instead of Robin) boundary conditions on Γ 1 . The main techniques used are derived from the parabolic variational inequality theory.

References (12)

  1. A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal. 13 (1982), 254-262.
  2. I. Babuska and S. Ohnimus, A priori error estimation for the semidiscrete finite element method of parabolic differential equations, Comput. Methods Appl. Mech. Engrg. 190 (2001), 4691-4712.
  3. C. Bacuta, J.H. Bramble and J.E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl. 10 (2003), 33-64.
  4. F. Ben Belgacem, H. El Fekih and J.P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptotic Anal. 34 (2003), 121-136.
  5. A. Bensoussan and J.L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, 1982.
  6. M. Bergounioux and F. Troltzsch, Optimal control of semilinear parabolic equations with state-constraints of Bottleneck type, ESAIM: Control, Optim. Calc. Var. 4 (1999), 595-608.
  7. K. Chrysafinos, M.D. Gunzburger and L.S. Hou, Semidiscrete approximations of optimal Robin boundary control prob- lems constrained by semilinear parabolic PDE, J. Math. Anal. Appl. 323 (2006), 891-912.
  8. C.M. Gariboldi and D.A. Tarzia, Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity, Appl. Math. Optim. 47 (2003), 213-230.
  9. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.
  10. J.L. Lions, Côntrole optimal des systemes gouvernés par des équations aux dérivées partielles, Dunod-Gauthier Villars, Paris, 1968.
  11. E.D. Tabacman and D.A. Tarzia, Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem, J. Differential Equations 77 (1989), 16-37.
  12. D.A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A 288 (1979), 941-944.