Academia.eduAcademia.edu

Outline

Positive Integer Powers OF Symmetric(0,1)-Heptadiagonal Matrix

2013, arXiv (Cornell University)

https://doi.org/10.13140/RG.2.1.4755.5687

Abstract

In this paper, we derive a general expression for mth powers of symmetric (0, 1)-heptadiagonal matrices with n = 3k order, n ∈ N (k = 1, 2, 3, ..., n/3).

References (13)

  1. J.C. Mason, D. C. Handscomb, Chebyshev Polynomials, CRC Press, Washington, 2003.R. P. Agar- wal, Difference Equations and Inequlities, Marcel Dekker, New York, 1992.
  2. J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order-II, Appl. Math. Comput. 172 (2006) 245-251.
  3. J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric pentadiagonal matrices of even order, Applied Mathematics and Computation 203 (2008) 582-591.
  4. J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of odd order-II, Appl. Math. Comput. 174 (2006) 676-683.
  5. J. Gutiérrez-Gutiérrez, Positive integer powers of certain tridiagonal matrices, Applied Mathematics and Computation 202 (2008) 133-140.
  6. L. Fox, J.B. Parke, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, 1968.
  7. Maryam Shams Solary, Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices, Journal of Mathematical Analysis and Applications, vol 402/2 (2013), pp 719-730.
  8. M. Elouafi and A. Driss Aiat Hadj, On the powers and the inverse of a tridiagonal matrix, Applied Mathematics and Computation 211 (2009) 137-141.
  9. R. P. Agarwal, Difference Equations and Inequlities, Marcel Dekker, New York, 1992.
  10. R. Witula and D. Slota, Some phenomenon of the powers of certain tridiagonal and asymmetric matrices, Applied Mathematics and Computation 202 (2008) 348-359.
  11. S. N. Elaydi, An Introduction to Difference Equations, Santa Clara University, 1995.
  12. Q.W. Wang, Z.H. He, A system of matrix equations and its applications, Science China Mathematics, 56 (9) (2013) 1795-1820.
  13. T. Sogabe, New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems, Applied Mathematics and Computation, vol. 202, no. 2, pp. 850-856, 2008.