Positive Integer Powers OF Symmetric(0,1)-Heptadiagonal Matrix
2013, arXiv (Cornell University)
https://doi.org/10.13140/RG.2.1.4755.5687Abstract
In this paper, we derive a general expression for mth powers of symmetric (0, 1)-heptadiagonal matrices with n = 3k order, n ∈ N (k = 1, 2, 3, ..., n/3).
References (13)
- J.C. Mason, D. C. Handscomb, Chebyshev Polynomials, CRC Press, Washington, 2003.R. P. Agar- wal, Difference Equations and Inequlities, Marcel Dekker, New York, 1992.
- J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order-II, Appl. Math. Comput. 172 (2006) 245-251.
- J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric pentadiagonal matrices of even order, Applied Mathematics and Computation 203 (2008) 582-591.
- J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of odd order-II, Appl. Math. Comput. 174 (2006) 676-683.
- J. Gutiérrez-Gutiérrez, Positive integer powers of certain tridiagonal matrices, Applied Mathematics and Computation 202 (2008) 133-140.
- L. Fox, J.B. Parke, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, 1968.
- Maryam Shams Solary, Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices, Journal of Mathematical Analysis and Applications, vol 402/2 (2013), pp 719-730.
- M. Elouafi and A. Driss Aiat Hadj, On the powers and the inverse of a tridiagonal matrix, Applied Mathematics and Computation 211 (2009) 137-141.
- R. P. Agarwal, Difference Equations and Inequlities, Marcel Dekker, New York, 1992.
- R. Witula and D. Slota, Some phenomenon of the powers of certain tridiagonal and asymmetric matrices, Applied Mathematics and Computation 202 (2008) 348-359.
- S. N. Elaydi, An Introduction to Difference Equations, Santa Clara University, 1995.
- Q.W. Wang, Z.H. He, A system of matrix equations and its applications, Science China Mathematics, 56 (9) (2013) 1795-1820.
- T. Sogabe, New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems, Applied Mathematics and Computation, vol. 202, no. 2, pp. 850-856, 2008.