Convolution multipliers and distributions
1975, Pacific Journal of Mathematics
https://doi.org/10.2140/PJM.1975.60.267Abstract
In this paper, in a purely algebraic way, Schwartz distributions in several variables are generalized in accordance with their homomorphism interpretation proposed by R. A. Struble. 0. Introduction. R. A. Struble in [10] has shown that Schwartz distributions can be characterized simply as mappings, from the space 3) of test functions into the space % of smooth functions, which commute with ordinary convolution. This new view of distributions has turned out to be very useful [11,12] and motivated us to give a simple generalization for distributions which is closely related to Mikusiήski operators and convolution quotients of other types [11, . The method employed here is an appropriate modification of a general algebraic method . Mappings which commute with convolution are called convolution multipliers here. (Distributions can be characterized as convolution multipliers, Mikusiήski operators themselves are convolution multipliers.) In §1, convolution multipliers from various subsets of 3) into % are discussed. We are primarily concerned with their maximal extensions. In §2, a module Wl of certain maximal convolution multipliers is constructed and investigated from an algebraic point of view. In §3, Schwartz distributions are embedded and characterized in W. For example, we prove that distributions are the only continuous elements of 2)ϊ. Finally, we show that there are elements in W which are not distributions. To illustrate the appropriateness of our generalizations, we refer to the following facts: One of the difficulties in working with Schwartz distributions is that only distributions Λ satisfying Λ * 3) = 3 are invertible in 3)'. Whereas, distibutions Λ satisfying A*3) C3) such that Λ * 3) has no proper annihilators in % are invertible in 3ft. (The heat operator in two dimensions [1] seems to be a distribution which is not invertible in 3)\ but is invertible in 9K.) There are regular Mikusiήski operators [1] which are not distributions. Whereas, normal Mikusiήski operators [11] can be embedded in Wl. their maximal extensions. Let k be a fixed positive integer, R* be the kdimensional Euclidean space and C be the field of complex numbers.
References (41)
- T. K. Boehme, The support of Mikusiήski operators, Trans. Amer. Math. Soc., 176 (1973), 319-334.
- G. D. Findlay and J. Lambek, A generalized ring of quotients I, II, Canad. Math. Bull., 1 (1958), 77-85; 155-167.
- E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, 1969.
- C. C. Hughes, Algebraic operational calculus for Schwartz distributions and Mikusiήski operators, Ph. D. Dissertation, North Caroline State University at Raleigh, 1973.
- R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc, 2 (1951), 891-895.
- R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin, 1971.
- M. D. Larsen and P. J. McCharty, Multiplicative Theory of Ideals, Academic Press, London, 1971.
- L. Mate, Multiplier operators and quotient algebra, Bull. Acad. Poίon. Sci. Ser. Sci. Math. Astr. Phys., 8 (1965), 523-526.
- W. Rudin, Functional Analysis, Me. Graw-Hill, New York, 1973.
- R. A. Struble, An algebraic view of distributions and operators, Studia Math., 37 (1971), 103-109.
- Operator homomorphisms, Math. Z., 130 (1973), 275-285.
- R. A. Struble and C. C. Hughes, Neocontinuous Mikusiήski operators, Trans. Amer. Math. Soc, 185 (1973), 383-400.
- A. Szaz, Convolution quotients and distributions, to appear in Publ. Math. Debrecen. Received August 12, 1974. UNIVERSITY OF DEBRECEN, HUNGARY Vol. 60, No. 2 October, 1975
- Waleed A. Al-Salam and A. Verma, A fractional Leibniz q-formula . . . . . . . . . . . . .
- Robert A. Bekes, Algebraically irreducible representations of L 1 (G). . . . . . . . . . . . 11
- Thomas Theodore Bowman, Construction functors for topological semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
- Stephen LaVern Campbell, Operator-valued inner functions analytic on the closed disc. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
- Leonard Eliezer Dor and Edward Wilfred Odell, Jr., Monotone bases in L p . . . . . . 51
- Yukiyoshi Ebihara, Mitsuhiro Nakao and Tokumori Nanbu, On the existence of global classical solution of initial-boundary value problem for cmu -u 3 = f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Y. Gordon, Unconditional Schauder decompositions of normed ideals of operators between some l p -spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- Gary Grefsrud, Oscillatory properties of solutions of certain nth order functional differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
- Irvin Roy Hentzel, Generalized right alternative rings . . . . . . . . . . . . . . . . . . . . . . . . . 95 Zensiro Goseki and Thomas Benny Rushing, Embeddings of shape classes of compacta in the trivial range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
- Emil Grosswald, Brownian motion and sets of multiplicity . . . . . . . . . . . . . . . . . . . . . 111
- Donald LaTorre, A construction of the idempotent-separating congruences on a bisimple orthodox semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
- Pjek-Hwee Lee, On subrings of rings with involution . . . . . . . . . . . . . . . . . . . . . . . . . . 131
- Marvin David Marcus and H. Minc, On two theorems of Frobenius . . . . . . . . . . . . . 149
- Michael Douglas Miller, On the lattice of normal subgroups of a direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
- Grattan Patrick Murphy, A metric basis characterization of Euclidean space . . . . . 159
- Roy Martin Rakestraw, A representation theorem for real convex functions . . . . . . 165
- Louis Jackson Ratliff, Jr., On Rees localities and H i -local rings . . . . . . . . . . . . . . . . 169
- Simeon Reich, Fixed point iterations of nonexpansive mappings . . . . . . . . . . . . . . . . 195
- Domenico Rosa, B-complete and B r -complete topological algebras . . . . . . . . . . . . 199
- Walter Roth, Uniform approximation by elements of a cone of real-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
- Helmut R. Salzmann, Homogene kompakte projektive Ebenen . . . . . . . . . . . . . . . . . . 217
- Jerrold Norman Siegel, On a space between B H and B ∞ . . . . . . . . . . . . . . . . . . . . . . 235
- Robert C. Sine, On local uniform mean convergence for Markov operators . . . . . . 247
- James D. Stafney, Set approximation by lemniscates and the spectrum of an operator on an interpolation space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
- Árpád Száz, Convolution multipliers and distributions . . . . . . . . . . . . . . . . . . . . . . . . . 267
- Kalathoor Varadarajan, Span and stably trivial bundles . . . . . . . . . . . . . . . . . . . . . . . . 277
- Robert Breckenridge Warfield, Jr., Countably generated modules over commutative Artinian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
- John Yuan, On the groups of units in semigroups of probability measures . . . . . . . . 303