Academia.eduAcademia.edu

Outline

Convolution multipliers and distributions

1975, Pacific Journal of Mathematics

https://doi.org/10.2140/PJM.1975.60.267

Abstract

In this paper, in a purely algebraic way, Schwartz distributions in several variables are generalized in accordance with their homomorphism interpretation proposed by R. A. Struble. 0. Introduction. R. A. Struble in [10] has shown that Schwartz distributions can be characterized simply as mappings, from the space 3) of test functions into the space % of smooth functions, which commute with ordinary convolution. This new view of distributions has turned out to be very useful [11,12] and motivated us to give a simple generalization for distributions which is closely related to Mikusiήski operators and convolution quotients of other types [11, . The method employed here is an appropriate modification of a general algebraic method . Mappings which commute with convolution are called convolution multipliers here. (Distributions can be characterized as convolution multipliers, Mikusiήski operators themselves are convolution multipliers.) In §1, convolution multipliers from various subsets of 3) into % are discussed. We are primarily concerned with their maximal extensions. In §2, a module Wl of certain maximal convolution multipliers is constructed and investigated from an algebraic point of view. In §3, Schwartz distributions are embedded and characterized in W. For example, we prove that distributions are the only continuous elements of 2)ϊ. Finally, we show that there are elements in W which are not distributions. To illustrate the appropriateness of our generalizations, we refer to the following facts: One of the difficulties in working with Schwartz distributions is that only distributions Λ satisfying Λ * 3) = 3 are invertible in 3)'. Whereas, distibutions Λ satisfying A*3) C3) such that Λ * 3) has no proper annihilators in % are invertible in 3ft. (The heat operator in two dimensions [1] seems to be a distribution which is not invertible in 3)\ but is invertible in 9K.) There are regular Mikusiήski operators [1] which are not distributions. Whereas, normal Mikusiήski operators [11] can be embedded in Wl. their maximal extensions. Let k be a fixed positive integer, R* be the kdimensional Euclidean space and C be the field of complex numbers.

References (41)

  1. T. K. Boehme, The support of Mikusiήski operators, Trans. Amer. Math. Soc., 176 (1973), 319-334.
  2. G. D. Findlay and J. Lambek, A generalized ring of quotients I, II, Canad. Math. Bull., 1 (1958), 77-85; 155-167.
  3. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, 1969.
  4. C. C. Hughes, Algebraic operational calculus for Schwartz distributions and Mikusiήski operators, Ph. D. Dissertation, North Caroline State University at Raleigh, 1973.
  5. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc, 2 (1951), 891-895.
  6. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin, 1971.
  7. M. D. Larsen and P. J. McCharty, Multiplicative Theory of Ideals, Academic Press, London, 1971.
  8. L. Mate, Multiplier operators and quotient algebra, Bull. Acad. Poίon. Sci. Ser. Sci. Math. Astr. Phys., 8 (1965), 523-526.
  9. W. Rudin, Functional Analysis, Me. Graw-Hill, New York, 1973.
  10. R. A. Struble, An algebraic view of distributions and operators, Studia Math., 37 (1971), 103-109.
  11. Operator homomorphisms, Math. Z., 130 (1973), 275-285.
  12. R. A. Struble and C. C. Hughes, Neocontinuous Mikusiήski operators, Trans. Amer. Math. Soc, 185 (1973), 383-400.
  13. A. Szaz, Convolution quotients and distributions, to appear in Publ. Math. Debrecen. Received August 12, 1974. UNIVERSITY OF DEBRECEN, HUNGARY Vol. 60, No. 2 October, 1975
  14. Waleed A. Al-Salam and A. Verma, A fractional Leibniz q-formula . . . . . . . . . . . . .
  15. Robert A. Bekes, Algebraically irreducible representations of L 1 (G). . . . . . . . . . . . 11
  16. Thomas Theodore Bowman, Construction functors for topological semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
  17. Stephen LaVern Campbell, Operator-valued inner functions analytic on the closed disc. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
  18. Leonard Eliezer Dor and Edward Wilfred Odell, Jr., Monotone bases in L p . . . . . . 51
  19. Yukiyoshi Ebihara, Mitsuhiro Nakao and Tokumori Nanbu, On the existence of global classical solution of initial-boundary value problem for cmu -u 3 = f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  20. Y. Gordon, Unconditional Schauder decompositions of normed ideals of operators between some l p -spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
  21. Gary Grefsrud, Oscillatory properties of solutions of certain nth order functional differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
  22. Irvin Roy Hentzel, Generalized right alternative rings . . . . . . . . . . . . . . . . . . . . . . . . . 95 Zensiro Goseki and Thomas Benny Rushing, Embeddings of shape classes of compacta in the trivial range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
  23. Emil Grosswald, Brownian motion and sets of multiplicity . . . . . . . . . . . . . . . . . . . . . 111
  24. Donald LaTorre, A construction of the idempotent-separating congruences on a bisimple orthodox semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
  25. Pjek-Hwee Lee, On subrings of rings with involution . . . . . . . . . . . . . . . . . . . . . . . . . . 131
  26. Marvin David Marcus and H. Minc, On two theorems of Frobenius . . . . . . . . . . . . . 149
  27. Michael Douglas Miller, On the lattice of normal subgroups of a direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
  28. Grattan Patrick Murphy, A metric basis characterization of Euclidean space . . . . . 159
  29. Roy Martin Rakestraw, A representation theorem for real convex functions . . . . . . 165
  30. Louis Jackson Ratliff, Jr., On Rees localities and H i -local rings . . . . . . . . . . . . . . . . 169
  31. Simeon Reich, Fixed point iterations of nonexpansive mappings . . . . . . . . . . . . . . . . 195
  32. Domenico Rosa, B-complete and B r -complete topological algebras . . . . . . . . . . . . 199
  33. Walter Roth, Uniform approximation by elements of a cone of real-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
  34. Helmut R. Salzmann, Homogene kompakte projektive Ebenen . . . . . . . . . . . . . . . . . . 217
  35. Jerrold Norman Siegel, On a space between B H and B ∞ . . . . . . . . . . . . . . . . . . . . . . 235
  36. Robert C. Sine, On local uniform mean convergence for Markov operators . . . . . . 247
  37. James D. Stafney, Set approximation by lemniscates and the spectrum of an operator on an interpolation space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
  38. Árpád Száz, Convolution multipliers and distributions . . . . . . . . . . . . . . . . . . . . . . . . . 267
  39. Kalathoor Varadarajan, Span and stably trivial bundles . . . . . . . . . . . . . . . . . . . . . . . . 277
  40. Robert Breckenridge Warfield, Jr., Countably generated modules over commutative Artinian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
  41. John Yuan, On the groups of units in semigroups of probability measures . . . . . . . . 303