A New Noncoding RNA Arranges Bacterial Chromosome Organization
2015, mBio
https://doi.org/10.1128/MBIO.00998-15Abstract
Repeated extragenic palindromes ( REP s) in the enterobacterial genomes are usually composed of individual palindromic units separated by linker sequences. A total of 355 annotated REP s are distributed along the Escherichia coli genome. RNA sequence (RNAseq) analysis showed that almost 80% of the REP s in E. coli are transcribed. The DNA sequence of REP 325 showed that it is a cluster of six repeats, each with two palindromic units capable of forming cruciform structures in supercoiled DNA. Here, we report that components of the REP 325 element and at least one of its RNA products play a role in bacterial nucleoid DNA condensation. These RNA not only are present in the purified nucleoid but bind to the bacterial nucleoid-associated HU protein as revealed by RNA IP followed by microarray analysis (RIP-Chip) assays. Deletion of REP 325 resulted in a dramatic increase of the nucleoid size as observed using transmission electron microscopy (TEM), and expression of one of the REP 325 RN...
References (38)
- Hüttenhofer A, Vogel J. 2006. Experimental approaches to identify non- coding RNAs. Nucleic Acids Res 34:635-646. http://dx.doi.org/10.1093/ nar/gkj469.
- Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johans- son J. 2010. RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8:857-866. http://dx.doi.org/10.1038/nrmicro2457.
- Han BW, Chen YQ. 2013. Potential pathological and functional links between Long noncoding RNAs and hematopoiesis. Sci Signal 6:. http:// dx.doi.org/10.1016/j.ijmm.2013.04.002.10.1126/scisignal.2004099.
- Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. 2013. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303:217-229. http:// dx.doi.org/10.1016/j.ijmm.2013.04.002.
- Tomizawa J, Som T. 1984. Control of ColE1 plasmid replication: enhance- ment of binding of RNA I to the primer transcript by the Rom protein. Cell 38:871-878. http://dx.doi.org/10.1016/0092-8674(84)90282-4.
- Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189 -213. http://dx.doi.org/10.1146/annurev-micro-090110-102946.
- Macvanin M, Edgar R, Cui F, Trostel A, Zhurkin V, Adhya S. 2012. Noncoding RNAs binding to the nucleoid protein HU in Escherichia coli. J Bacteriol 194:6046 -6055. http://dx.doi.org/10.1128/JB.00961-12.
- Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M. 1991. The BIME family of bacterial highly repetitive sequences. Res Microbiol 142: 217-222. http://dx.doi.org/10.1016/0923-2508(91)90033-7.
- Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M. 1991. Palindromic units are part of a new bacterial interspersed mosaic element (BIME). Nucleic Acids Res 19:1375-1383. http://dx.doi.org/10.1093/nar/19.7.1375.
- Gilson E, Clément JM, Brutlag D, Hofnung M. 1984. A family of dis- persed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J 3:1417-1421.
- Boccard F, Prentki P. 1993. Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3= end of transcription units. EMBO J 12:5019 -5027.
- Espéli O, Boccard F. 1997. In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identi- fication of the cut site. Mol Microbiol 26:767-777. http://dx.doi.org/ 10.1046/j.1365-2958.1997.6121983.x.
- Espéli O, Moulin L, Boccard F. 2001. Transcription attenuation associ- ated with bacterial repetitive extragenic BIME elements. J Mol Biol 314: 375-386. http://dx.doi.org/10.1006/jmbi.2001.5150.
- Gilson E, Perrin D, Hofnung M. 1990. DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucleic Acids Res 18:3941-3952. http://dx.doi.org/10.1093/nar/18.13.3941.
- Ohniwa RL, Muchaku H, Saito S, Wada C, Morikawa K. 2013. Atomic force microscopy analysis of the role of major DNA-binding proteins in organization of the nucleoid in Escherichia coli. PLoS One 8:e72954. http://dx.doi.org/10.1371/journal.pone.0072954.
- Pettijohn DE, Hecht R. 1974. RNA molecules bound to the folded bacte- rial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb Symp Quant Biol 38:31-41. http://dx.doi.org/10.1101/ SQB.1974.038.01.006.
- Raghavan R, Groisman EA, Ochman H. 2011. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 21:1487-1497. http:// dx.doi.org/10.1101/gr.119370.110.
- Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromo- some conformation. Science 295:1306 -1311. http://dx.doi.org/10.1126/ science.1067799.
- Qian Z, Dimitriadis EK, Edgar R, Eswaramoorthy P, Adhya S. 2012. Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli. Proc Natl Acad Sci U S A 109:11336 -11341. http:// dx.doi.org/10.1073/pnas.1208595109.
- Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, Hong SH, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH, Shapiro L, Dekker J, Church GM. 2011. The three-dimensional architecture of a bacterial ge- nome and its alteration by genetic perturbation. Mol Cell 44:252-264. http://dx.doi.org/10.1016/j.molcel.2011.09.010.
- Balandina A, Kamashev D, Rouviere-Yaniv J. 2002. The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem 277: 27622-27628. http://dx.doi.org/10.1074/jbc.M201978200.
- Lewis DE, Adhya S. 2002. In vitro repression of the gal promoters by GalR and HU depends on the proper helical phasing of the two operators. J Biol Chem 277:2498 -2504. http://dx.doi.org/10.1074/jbc.M108456200.
- Robinow C, Kellenberger E. 1994. The bacterial nucleoid revisited. Mi- crobiol Rev 58:211-232.
- Deng S, Stein RA, Higgins NP. 2005. Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57:1511-1521. http://dx.doi.org/10.1111/j.1365-2958.2005.04796.x.
- Espeli O, Mercier R, Boccard F. 2008. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68: 1418 -1427. http://dx.doi.org/10.1111/j.1365-2958.2008.06239.x.
- Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J. 2010. Strong intranucleoid interactions organize the Escherichia coli chromo- some into a nucleoid filament. Proc Natl Acad Sci U S A 107:4991-4995. http://dx.doi.org/10.1073/pnas.0912062107.
- Wang W, Li GW, Chen C, Xie XS, Zhuang X. 2011. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333: 1445-1449. http://dx.doi.org/10.1126/science.1204697.
- Castaing B, Zelwer C, Laval J, Boiteux S. 1995. HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J B i o l C h e m 2 7 0 : 1 0 2 9 1 -1 0 2 9 6 . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 7 4 / jbc.270.17.10291.
- Kamashev D, Balandina A, Rouviere-Yaniv J. 1999. The binding motif recognized by HU on both nicked and cruciform DNA. EMBO J 18: 5434 -5444. http://dx.doi.org/10.1093/emboj/18.19.5434.
- Claret L, Rouviere-Yaniv J. 1997. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term sur- vival. J Mol Biol 273:93-104. http://dx.doi.org/10.1006/jmbi.1997.1310.
- Aki T, Adhya S. 1997. Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J 16:3666 -3674. http://dx.doi.org/ 10.1093/emboj/16.12.3666.
- Vitoc CI, Mukerji I. 2011. HU binding to a DNA four-way junction probed by forster resonance energy transfer. Biochemistry 50:1432-1441. http://dx.doi.org/10.1021/bi1007589.
- Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG. 2001. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56 -65. http:// dx.doi.org/10.1006/geno.2000.6451.
- Court DL, Swaminathan S, Yu D, Wilson H, Baker T, Bubunenko M, Sawitzke J, Sharan SK. 2003. Mini-lambda: a tractable system for chro- mosome and BAC engineering. Gene 315:63-69. http://dx.doi.org/ 10.1016/S0378-1119(03)00728-5.
- Choy HE, Adhya S. 1993. RNA polymerase idling and clearance in gal promoters: use of supercoiled minicircle DNA template made in vivo. Proc Natl Acad Sci U S A 90:472-476. http://dx.doi.org/10.1073/ pnas.90.2.472.
- Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Zweig AS, Karolchik D, Kent WJ. 2013. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC genome browser. Bioinformatics 30:1003-1005.
- Qian Z, Meng B, Wang Q, Wang Z, Zhou C, Tu S, Lin L, Ma Y, Liu S. 2009. Systematic characterization of a novel gal operon in Thermoanaero- bacter tengcongensis. Microbiology 155:1717-1725. http://dx.doi.org/ 10.1099/mic.0.025536-0.
- Qian Z, Wang Q, Tong W, Zhou C, Liu S. 2010. Regulation of galactose metabolism through the HisK:GalR two-component system in Thermo- anaerobacter tengcongensis. J Bacteriol 192:4311-4316. http:// dx.doi.org/10.1128/JB.00402-10.