Academia.eduAcademia.edu

Outline

Data Mining in Systems Health Management

2010

References (24)

  1. A. Andrieu, C.and Doucet and Punskaya E. Sequential Monte Carlo Methods for Optimal Filtering. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer- Verlag, NY, USA, 2001.
  2. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 50(2), 2002.
  3. I. Dar and G. Vachtsevanos. Feature level sensor for pattern recognition using an active perception approach. In Proceedings of IS&T/SPIE's Electronic Imaging '97: Science and Technology, 1997.
  4. A. Doucet, N. de Freitas, and N. Gordon. An introduction to Sequential Monte Carlo methods. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer-Verlag, NY, USA, 2001.
  5. A.D. Flint. A Prognostic Maintenance System Based on the Hough Trans- formation. Transactions of the Institute of Measurement and Control, 16(2):59-65, 1994.
  6. G. Hadden, P. Bergstrom, B. Bennett, G. Vachtsevanos, and J. Van Dyke. Shipboard machinery diagnostics and prognostics/condition based main- tenance: A progress report. In Proceedings of the Maintenance and Reli- ability Conference, MARCON 99, pages 73.01-73.16, 1999.
  7. G. Hadden, G. Vachtsevanos, B. Bennett, and J. Van Dyke. Machinery di- agnostics and prognostics and prognostics/condition based maintenance: A progress report, failure analysis: A foundation for diagnostics and prog- nostics development. In Proceedings of the 53rd Meeting of the society for Machinery Failure Prevention Technology, 1999.
  8. J. Keller and P. Grabill. Vibration monitoring of a uh-60a main trans- mission planetary carrier fault. In Proceedings of the 59th Annual Forum AmericanHelicopter Society, 2003.
  9. D. Kundur and D. Hatzinakos. Blind Image Deconvolution. IEEE Signal Processing Magazine, 13(3):43-46, 1996.
  10. K.A. Marko, J.V. James, T.M. Feldkamp, C.V. Puskorius, J.A. Feld- kamp, and D. Roller. pplication of neural networks to the construction of "virtual sensor and model-based diagnostics. In Proceedings of ISATA 29th International Symposium on Automotive Technology and Automa- tion, pages 133-138, 1996.
  11. C. Musso, N. Oudjane, and F. Le Gland. Improving regularized particle filters. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer-Verlag, NY, USA, 2001.
  12. M. Orchard. On-line Fault Diagnosis and Failure Prognosis Using Par- ticle Filters. Theoretical Framework and Case Studies. VDM Verlag Dr. Mller Aktiengesellschaft and Co. KG, Saarbrcken, Germany, 2009.
  13. M. Orchard, F. Tobar, and G. Vachtsevanos. Outer Feedback Correc- tion Loops in Particle Filtering-based Prognostic Algorithms: Statistical Performance Comparison. Studies in Informatics and Control, 18(4):295- 304, 2009.
  14. M. Orchard and G. Vachtsevanos. A Particle Filtering Approach for On- Line Fault Diagnosis and Failure Prognosis. Transactions of the Institute of Measurement and Control, 31(3-4):221-246, 2009.
  15. M. Orchard, B. Wu, and G. Vachtsevanos. A particle filter framework for failure prognosis. In Proceedings of WTC2005 World Tribology Congress III, 2005.
  16. R. Patrick, M. Orchard, B. Zhang, M. Koelemay, G. Kacprzynski, A. Ferri, and G. Vachtsevanos. An integrated approach to helicopter planetary gear fault diagnosis and failure prognosis. In 42nd Annual Sys- tems Readiness Technology Conference, AUTOTESTCON 2007, 2007.
  17. T.D. Pebbles, M.A. Essawy, and S. Fein-Sabatto. An intelligent method- ology for remaining useful life estimation of mechanical components. In Proceedings of the Maintenance and Reliability Conference, MARCON 99, pages 27.01-27.09, 1999.
  18. R. Peled, S. Braun, and M. Zacksenhouse. A Blind Deconvolution Seper- ation of Multiple Sources with application to Bearing Diagnostics. Me- chanical Systems and Signal Processing, 14(3):427-442, 2000.
  19. M. Roemer, C. Byingston, G. Kacprzynski, and G. Vachtsevanos. An overview of selected prognostic technologies with reference to an inte- grated phm architecture. In Proceedings of NASA Integrated Vehicle Health Management Workshop, 2005.
  20. B.J. Rosenberg. The navy idss program: adaptive diagnostics and feed- back analysis-precursors to a fault prognostics capability. In Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON, volume 3, pages 1334-1338, 1989.
  21. A. Saxena, B. Wu, and G. Vachtsevanos. Integrated diagnosis and prog- nosis architecture for fleet vehicles using dynamic case-based reasoning. In Proceedings of AUTOTESTCON 2005 Conference, 2005.
  22. B. Wu, A. Saxena, R. Patrick, and G. Vachtsevanos. Vibration monitoring for fault diagnosis of helicopter planetary gears. In Proceedings of the 16th IFAC World Congress, 2005.
  23. B. Zhang, T. Khawaja, R. Patrick, G. Vachtsevanos, M. Orchard, and A. Saxena. Application of Blind Deconvolution Denoising in Failure Prognosis. IEEE Transactions on Instrumentation and Measurement, 58(2):303-310, 2009.
  24. B. Zhang, T. Khawaja, R. Patrick, G. Vachtsevanos, M. Orchard, and A. Saxena. A Novel Blind Deconvolution De-Noising Scheme in Failure Prognosis. Transactions of the Institute of Measurement and Control, 32(1):3-30, 2010.