Data Mining in Systems Health Management
2010
References (24)
- A. Andrieu, C.and Doucet and Punskaya E. Sequential Monte Carlo Methods for Optimal Filtering. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer- Verlag, NY, USA, 2001.
- M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 50(2), 2002.
- I. Dar and G. Vachtsevanos. Feature level sensor for pattern recognition using an active perception approach. In Proceedings of IS&T/SPIE's Electronic Imaging '97: Science and Technology, 1997.
- A. Doucet, N. de Freitas, and N. Gordon. An introduction to Sequential Monte Carlo methods. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer-Verlag, NY, USA, 2001.
- A.D. Flint. A Prognostic Maintenance System Based on the Hough Trans- formation. Transactions of the Institute of Measurement and Control, 16(2):59-65, 1994.
- G. Hadden, P. Bergstrom, B. Bennett, G. Vachtsevanos, and J. Van Dyke. Shipboard machinery diagnostics and prognostics/condition based main- tenance: A progress report. In Proceedings of the Maintenance and Reli- ability Conference, MARCON 99, pages 73.01-73.16, 1999.
- G. Hadden, G. Vachtsevanos, B. Bennett, and J. Van Dyke. Machinery di- agnostics and prognostics and prognostics/condition based maintenance: A progress report, failure analysis: A foundation for diagnostics and prog- nostics development. In Proceedings of the 53rd Meeting of the society for Machinery Failure Prevention Technology, 1999.
- J. Keller and P. Grabill. Vibration monitoring of a uh-60a main trans- mission planetary carrier fault. In Proceedings of the 59th Annual Forum AmericanHelicopter Society, 2003.
- D. Kundur and D. Hatzinakos. Blind Image Deconvolution. IEEE Signal Processing Magazine, 13(3):43-46, 1996.
- K.A. Marko, J.V. James, T.M. Feldkamp, C.V. Puskorius, J.A. Feld- kamp, and D. Roller. pplication of neural networks to the construction of "virtual sensor and model-based diagnostics. In Proceedings of ISATA 29th International Symposium on Automotive Technology and Automa- tion, pages 133-138, 1996.
- C. Musso, N. Oudjane, and F. Le Gland. Improving regularized particle filters. In Sequential Monte Carlo Methods in Practice , A. Doucet, N. De Frietas, and N. Gordon (Eds.) Springer-Verlag, NY, USA, 2001.
- M. Orchard. On-line Fault Diagnosis and Failure Prognosis Using Par- ticle Filters. Theoretical Framework and Case Studies. VDM Verlag Dr. Mller Aktiengesellschaft and Co. KG, Saarbrcken, Germany, 2009.
- M. Orchard, F. Tobar, and G. Vachtsevanos. Outer Feedback Correc- tion Loops in Particle Filtering-based Prognostic Algorithms: Statistical Performance Comparison. Studies in Informatics and Control, 18(4):295- 304, 2009.
- M. Orchard and G. Vachtsevanos. A Particle Filtering Approach for On- Line Fault Diagnosis and Failure Prognosis. Transactions of the Institute of Measurement and Control, 31(3-4):221-246, 2009.
- M. Orchard, B. Wu, and G. Vachtsevanos. A particle filter framework for failure prognosis. In Proceedings of WTC2005 World Tribology Congress III, 2005.
- R. Patrick, M. Orchard, B. Zhang, M. Koelemay, G. Kacprzynski, A. Ferri, and G. Vachtsevanos. An integrated approach to helicopter planetary gear fault diagnosis and failure prognosis. In 42nd Annual Sys- tems Readiness Technology Conference, AUTOTESTCON 2007, 2007.
- T.D. Pebbles, M.A. Essawy, and S. Fein-Sabatto. An intelligent method- ology for remaining useful life estimation of mechanical components. In Proceedings of the Maintenance and Reliability Conference, MARCON 99, pages 27.01-27.09, 1999.
- R. Peled, S. Braun, and M. Zacksenhouse. A Blind Deconvolution Seper- ation of Multiple Sources with application to Bearing Diagnostics. Me- chanical Systems and Signal Processing, 14(3):427-442, 2000.
- M. Roemer, C. Byingston, G. Kacprzynski, and G. Vachtsevanos. An overview of selected prognostic technologies with reference to an inte- grated phm architecture. In Proceedings of NASA Integrated Vehicle Health Management Workshop, 2005.
- B.J. Rosenberg. The navy idss program: adaptive diagnostics and feed- back analysis-precursors to a fault prognostics capability. In Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON, volume 3, pages 1334-1338, 1989.
- A. Saxena, B. Wu, and G. Vachtsevanos. Integrated diagnosis and prog- nosis architecture for fleet vehicles using dynamic case-based reasoning. In Proceedings of AUTOTESTCON 2005 Conference, 2005.
- B. Wu, A. Saxena, R. Patrick, and G. Vachtsevanos. Vibration monitoring for fault diagnosis of helicopter planetary gears. In Proceedings of the 16th IFAC World Congress, 2005.
- B. Zhang, T. Khawaja, R. Patrick, G. Vachtsevanos, M. Orchard, and A. Saxena. Application of Blind Deconvolution Denoising in Failure Prognosis. IEEE Transactions on Instrumentation and Measurement, 58(2):303-310, 2009.
- B. Zhang, T. Khawaja, R. Patrick, G. Vachtsevanos, M. Orchard, and A. Saxena. A Novel Blind Deconvolution De-Noising Scheme in Failure Prognosis. Transactions of the Institute of Measurement and Control, 32(1):3-30, 2010.