Triangle Estimation using Polylogarithmic Queries
2018, ArXiv
Abstract
Estimating the number of triangles in a graph is one of the most fundamental problems in sublinear algorithms. In this work, we provide the first approximate triangle counting algorithm using only polylogarithmic queries. Our query oracle "Tripartite Independent Set" (TIS) takes three disjoint sets of vertices $A$, $B$ and $C$ as input, and answers whether there exists a triangle having one endpoint in each of these three sets. Our query model is inspired by the "Bipartite Independent Set" (BIS) query oracle of Beame et al. (ITCS, 2018). Their algorithm for edge estimation requires only polylogarithmic BIS queries, where a BIS query takes two disjoint sets $A$ and $B$ as input and answers whether there is an edge with endpoints in $A$ and $B$. We extend the algorithmic framework of Beame et al., with TIS replacing BIS, for triangle counting using ideas from color coding due to Alon et al. (J. ACM, 1995) and a concentration inequality for sums of random variables ...
References (22)
- N. K. Ahmed, N. G. Duffield, J. Neville, and R. R. Kompella. Graph Sample and Hold: A Framework for Big-Graph Analytics. In KDD, pages 1446-1455, 2014.
- Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In PODS, pages 5-14. ACM, 2012.
- N. Alon, R. Yuster, and U. Zwick. Color-Coding. J. ACM, 42(4):844-856, 1995.
- N. Alon, R. Yuster, and U. Zwick. Finding and Counting Given Length Cycles. Algo- rithmica, 17(3):209-223, 1997.
- BFL + 06] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler. Counting triangles in data streams. In PODS, pages 253-262, 2006.
- BHR + 18] P. Beame, S. Har-Peled, S. N. Ramamoorthy, C. Rashtchian, and M. Sinha. Edge Estimation with Independent Set Oracles. In ITCS, pages 38:1-38:21, 2018.
- Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in Atreaming Algorithms, with an Application to Counting Triangles in Graphs. In SODA, pages 623-632, 2002.
- A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing Triangles. In ICALP, pages 223-234, 2014.
- G. Cormode and H. Jowhari. A second look at counting triangles in graph streams (corrected). Theor. Comput. Sci., 683:22-30, 2017.
- D.P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Ran- domized Algoritms. In Cambridge, 2009.
- T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear Time. SIAM J. Comput., 46(5):1603-1646, 2017.
- T. Eden, D. Ron, and C. Seshadhri. On approximating the number of k-cliques in sublinear time. In STOC, pages 722-734, 2018.
- O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. Random Struct. Algorithms, 32(4):473-493, 2008.
- M. Gonen, D. Ron, and Y. Shavitt. Counting Stars and Other Small Subgraphs in Sublinear-Time. SIAM J. Discrete Math., 25(3):1365-1411, 2011.
- A. Itai and M. Rodeh. Finding a Minimum Circuit in a Graph. SIAM J. Comput., 7(4):413-423, 1978.
- S. Janson. Large Deviations for Sums of Partly Dependent Random Variables. Random Struct. Algorithms, 24(3):234-248, 2004.
- H. Jowhari and M. Ghodsi. New Streaming Algorithms for Counting Triangles in Graphs. In COCOON, pages 710-716, 2005.
- M. Jha, C. Seshadhri, and A. Pinar. A Space Efficient Streaming Algorithm for Triangle Counting using the Birthday Paradox. In KDD, pages 589-597, 2013.
- D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting Arbitrary Subgraphs in Data Streams. In ICALP, pages 598-609, 2012.
- J. Kallaugher and E. Price. A Hybrid Sampling Scheme for Triangle Counting. In SODA, pages 1778-1797, 2017.
- A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and Sampling Triangles from a Graph Stream. PVLDB, 6(14):1870-1881, 2013.
- K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel Triangle Counting in Massive Streaming Graphs. In CIKM, pages 781-786, 2013.