Boundary values as Hamiltonian variables. I. New Poisson brackets
1993, Journal of Mathematical Physics
https://doi.org/10.1063/1.530280Abstract
The ordinary Poisson brackets in field theory do not fulfill the Jacobi identity if boundary values are not reasonably fixed by special boundary conditions. It is shown that these brackets can be modified by adding some surface terms to lift this restriction. The new brackets generalize a canonical bracket considered by Lewis, Marsden, Montgomery, and Ratiu for the free boundary problem in hydrodynamics. The definition of Poisson brackets used herein permits the treating of to treat boundary values of a field on equal footing with its internal values and the direct estimation of estimate the brackets between both surface and volume integrals. This construction is applied to any local form of Poisson brackets.
References (29)
- I.M.Gel'fand and L.A.Dickey, Uspekhi Mat. Nauk 30 (1975) 67;
- A.M.Astashov and A.M.Vinogradov, J. Geom. Phys. 3 (1986) 263;
- B.A.Dubrovin and S.P.Novikov, Uspekhi Mat. Nauk 44 (1989) 29.
- T.Regge and C.Teitelboim, Ann. of Phys. 88 (1974) 286.
- V.O.Soloviev, Teor. Mat. Fiz. 65 (1985) 400.
- V.I.Arnold, "Mathematical methods of classical mechanics", Moscow, "Nauka", 1974 (in Russian), page 186.
- V.A.Arkadiev, A.K.Pogrebkov and M.K.Polivanov, Dokl. Acad. Nauk 298 (1988) 324;
- V.A.Arkadiev, A.K.Pogrebkov and M.K.Polivanov, Teor. Mat. Fiz. 75 (1988) 170.
- L.D.Faddeev and L.A.Takhtajan, Lett. Math. Phys. 10 (1985) 183.
- V.S.Buslaev, L.D.Faddeev and L.A.Takhtajan, Physica D 18 (1986) 255.
- A.Kundu and B.B.Mallick, J. Phys. A: Math.Gen. 23 (1990) L709.
- V.O.Soloviev, Phys. Lett. B 292 (1992) 30.
- I.M.Anderson, "Mathematical foundations of the Einstein field equations", Ph.D. thesis, Univ. of Arizona, 1976;
- I.M.Anderson, Aequationes Mathematicae 17 (1978) 255.
- S.J.Aldersley, J. Math. Phys. 20 (1979) 522.
- P.J.Olver "Applications of Lie groups to differential equations" (Graduate texts in math- ematics) Springer-Verlag, N.Y., 1986.
- D.Lewis, J.Marsden, R.Montgomery and T.Ratiu, Physica D 18 (1986) 391.
- V.E.Zakharov, Zhurnal Prikl. Mekh. Tekhn. Fiz. (1968) no.2, p.86.
- I.M.Anderson. Introduction to the variational bicomplex. In: "Mathematical aspects of classical field theory" ( Eds. M.J.Gotay, J.E.Marsden and V.Moncrief, Contemporary Mathematics, 132) AMS, Providence, Rhode Island, 1992.
- M.D.Kruskal, R.M.Miura, C.S.Gardner and N.J.Zabusky, J. Math. Phys. 11 (1970) 952.
- A.P.Prudnikov, Yu.A.Brychkov and O.I.Marichev, "Integrals and series", vol.1, p.616, Moscow, "Nauka", 1981 (in Russian).
- B.Fuchssteiner and A.S.Fokas, Physica D 4 (1981) 47.
- I.M.Gel'fand and G.E.Shilov, "Generalized functions.1" Moscow, "Fizmatgiz", 1959 (in Russian);
- V.S.Vladimirov, "Equations of mathematical physics", Moscow, "Nauka", 1967 (in Rus- sian).
- B.Malgrange, "Ideals of differentiable functions", Oxford University Press, 1966.
- N.N.Bogolyubov, A.A.Logunov, I.T.Todorov and A.I.Oksak, "General principles of quantum field theory", Moscow, "Nauka", 1987 (in Russian).
- Yu.V.Egorov, Uspekhi Mat. Nauk 45 (1990) 3.
- R.Arnowitt, S.Deser and C.W.Misner, J. Math. Phys. 1 (1960) 434.
- H.Nicolai and H.-J.Matschull. Aspects of canonical gravity and supergravity. Preprint DESY 92-099, Hamburg, 1992.