Silver Nanoparticle Synthesis Using an Inkjet Mixing System
2021, Frontiers in Chemical Engineering
https://doi.org/10.3389/FCENG.2021.742322Abstract
Individual nanoscale silver particles were produced using an inkjet mixing system. First, the behaviors of colliding droplets were investigated to prepare to conduct the synthesis without splitting merged droplets. When small droplets collided, they merged to form droplets that stayed in a state of coalescence at a higher discharging velocity. In addition, by changing the orientation at the collision point, the droplet velocity could be increased. Then, silver nanoparticle synthesis was conducted under conditions that avoided droplet splitting. Smaller particles were produced by higher-velocity collisions for all the examined droplet sizes. When droplets were 50–100 μm, an average particle diameter of 2.5 nm was produced. In addition, when droplets of different sizes collided, they formed a continuous supply of precursor, which subsequently resulted in production of particles with uniform size.
FAQs
AI
What is the impact of droplet size on AgNP size distribution?
The study finds that using 50-100 μm droplets results in AgNPs with average diameter of 2.5 nm and a coefficient of variation (CV) of approximately 0.4, indicating a narrow size distribution.
How does the impact parameter B influence AgNP synthesis?
Increasing the impact parameter B z enhanced droplet coalescence, allowing for successful AgNP synthesis at higher Weber numbers (We), thus producing smaller nanoparticles.
What role does the mixing time play in particle nucleation and growth?
Rapid mixing, achieved within 1 ms, is crucial for controlling nucleation and growth, which significantly affects the monodispersity of the synthesized nanoparticles.
What advantages does the inkjet mixing system (IMS) provide over traditional micromixers?
IMS reduces clogging and reagent expenses, allowing facile synthesis of nanoparticles by mixing small droplets in the air instead of using confined channels.
How does PVA affect the stability of synthesized AgNPs?
Using polyvinyl alcohol (PVA) protects against particle aggregation, thereby contributing to the monodispersity of AgNPs produced in this system.
References (23)
- Baber, R., Mazzei, L., Thanh, N. T. K., and Gavriilidis, A. (2015). Synthesis of Silver Nanoparticles in a Microfluidic Coaxial Flow Reactor. RSC Adv. 5, 95585-95591. doi:10.1039/c5ra17466j
- Baber, R., Mazzei, L., Thanh, N. T. K., and Gavriilidis, A. (2016). Synthesis of Silver Nanoparticles Using a Microfluidic Impinging Jet Reactor. J. Flow Chem. 6, 268-278. doi:10.1556/1846.2016.00015
- Chen, D., Qiao, X., Qiu, X., and Chen, J. (2009). Synthesis and Electrical Properties of Uniform Silver Nanoparticles for Electronic Applications. J. Mater. Sci. 44, 1076-1081. doi:10.1007/s10853-008-3204-y
- Davis, R. D., Jacobs, M. I., Houle, F. A., and Wilson, K. R. (2017). Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes. Anal. Chem. 89, 12494-12501. doi:10.1021/acs.analchem.7b03601
- Fang, W.-F., and Yang, J.-T. (2009). A Novel Microreactor with 3D Rotating Flow to Boost Fluid Reaction and Mixing of Viscous Fluids. Sensors Actuators B: Chem. 140, 629-642. doi:10.1016/j.snb.2009.05.007
- Guo, W., Heeres, H. J., and Yue, J. (2020). Continuous Synthesis of 5- hydroxymethylfurfural from Glucose Using a Combination of AlCl3 and HCl as Catalyst in a Biphasic Slug Flow Capillary Microreactor. Chem. Eng. J. 381, 122754. doi:10.1016/j.cej.2019.122754
- Gupta, M. K., Meng, F., Johnson, B. N., Kong, Y. L., Tian, L., Yeh, Y.-W., et al. (2015). 3D Printed Programmable Release Capsules. Nano Lett. 15, 5321-5329. doi:10.1021/acs.nanolett.5b01688
- Hessel, V., Löwe, H., and Schönfeld, F. (2005). Micromixers-a Review on Passive and Active Mixing Principles. Chem. Eng. Sci. 60, 2479-2501. doi:10.1016/ j.ces.2004.11.033
- Inohara, K., Asano, S., Maki, T., and Mae, K. (2019). Synthesis of Small Lipid Nanoparticles Using an Inkjet Mixing System Aiming to Reduce Drug Loss. Chem. Eng. Technol. 42, 2061-2066. doi:10.1002/ceat.201900041
- Mandrycky, C., Wang, Z., Kim, K., and Kim, D.-H. (2016). 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 34, 422-434. doi:10.1016/ j.biotechadv.2015.12.011
- Mer, V. K. L. (1952). Nucleation in Phase Transitions. Ind. Eng. Chem. 44, 1270-1277. doi:10.1021/ie50510a027
- Mitsudome, T., Arita, S., Mori, H., Mizugaki, T., Jitsukawa, K., and Kaneda, K. (2008a). Supported Silver-Nanoparticle-Catalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angew. Chem. 120, 8056-8058. doi:10.1002/ange.200802761
- Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., and Kaneda, K. (2008b). Oxidant-Free Alcohol Dehydrogenation Using a Reusable Hydrotalcite-Supported Silver Nanoparticle Catalyst. Angew. Chem. Int. Ed. 47, 138-141. doi:10.1002/anie.200703161
- Muranaka, Y., Nakagawa, H., Masaki, R., Maki, T., and Mae, K. (2017). Continuous 5-hydroxymethylfurfural Production from Monosaccharides in a Microreactor. Ind. Eng. Chem. Res. 56, 10998-11005. doi:10.1021/acs.iecr.7b02017
- Nagasawa, H., Aoki, N., and Mae, K. (2005). Design of a New Micromixer for Instant Mixing Based on the Collision of Micro Segments. Chem. Eng. Technol. 28, 324-330. doi:10.1002/ceat.200407118
- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 9, 676-682. doi:10.1038/nmeth.2019
- Scholl, J. A., Koh, A. L., and Dionne, J. A. (2012). Quantum Plasmon Resonances of Individual Metallic Nanoparticles. Nature 483, 421-427. doi:10.1038/ nature10904
- Schwesinger, N., Frank, T., and Wurmus, H. (1996). A Modular Microfluid System with an Integrated Micromixer. J. Micromech. Microeng. 6, 99-102. doi:10.1088/0960-1317/6/1/023
- Takano, Y., Kikkawa, S., Suzuki, T., and Kohno, J.-y. (2015). Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid- Droplet Collision. J. Phys. Chem. B 119, 7062-7067. doi:10.1021/ acs.jpcb.5b03233
- Takesue, M., Tomura, T., Yamada, M., Hata, K., Kuwamoto, S., and Yonezawa, T. (2011). Size of Elementary Clusters and Process Period in Silver Nanoparticle Formation. J. Am. Chem. Soc. 133, 14164-14167. doi:10.1021/ja202815y
- Watanabe, S., Ohsaki, S., Hanafusa, T., Takada, K., Tanaka, H., Mae, K., et al. (2017). Synthesis of Zeolitic Imidazolate Framework-8 Particles of Controlled Sizes, Shapes, and Gate Adsorption Characteristics Using a central Collision- type Microreactor. Chem. Eng. J. 313, 724-733. doi:10.1016/j.cej.2016.12.118
- Wiktor, P., Brunner, A., Kahn, P., Qiu, J., Magee, M., Bian, X., et al. (2015). Microreactor Array Device. Sci. Rep. 5, 1-8. doi:10.1038/srep08736
- Yamada, T., Fukuhara, K., Matsuoka, K., Minemawari, H., Tsutsumi, J. y., Fukuda, N., et al. (2016). Nanoparticle Chemisorption Printing Technique for Conductive Silver Patterning with Submicron Resolution. Nat. Commun. 7, 1-9. doi:10.1038/ncomms11402