Web Image Search Re-ranking Dependent on Diversity
2020
Abstract
Social media sharing websites sanction users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-predicated image search is a consequential method to find images shared by users in gregarious networks. However, how to make the top ranked result germane and with diversity is arduous. In this paper, we propose a topic diverse ranking approach for tag-predicated image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph predicated on the homogeneous attribute between each tag. Then community detection technique is led to mine the subject network of each tag. From that point forward, inter network and intra network positioning are acquainted with acquire the last recovered outcomes. In the inter-community ranking process, an adaptive desultory walk model is employed to rank the community predicated on the multi-information of each topic community. Besides, we build a...
References (64)
- D. Liu, X. Hua, L. Yang, M. Wang, and H. Zhang, "Tag ranking". WWW, 2009: 351-360.
- X. Qian, H. Wang, Y. Zhao, et al.,Image Location Inference by Multisaliency Enhancement. IEEE Trans.Multimedia 19(4): 813-821 (2017)
- D. Liu, X. Hua, M. Wang, and H. Zhang, "Boost Search Relevance for Tag-Based Social Image Retrieval". ICME, 2009:1636-1639.
- X. Lu, X. Li and X. Zheng, Latent Semantic Minimal Hashing for Image Retrieval,IEEE Trans. Image processing, vol. 26, no. 1, pp. 355-368, 2017.
- M. Wang, K. Yang, X. Hua, and H. Zhang, "Towards relevant and diverse search of social images". IEEE Trans. Multimedia, 12(8):829-842, 2010.
- A. Ksibi, A. Ammar, and C. Amar, "Adaptive diversification for tag-based social image retrieval". International Journal of Multimedia Information Retrieval, 2014, 3(1): 29-39.
- Y. Gao, M. Wang, H. Luan, J. Shen, S. Yan, and D. Tao, "Tag- based social image search with visual-text joint hypergraph learning". ACM Multimedia information retrieval, 2011:1517- 1520.
- X. Li, B. Zhao, and X. Lu, A General Framework for Edited Video and Raw Video Summarization," IEEE Transactions on Image Processing. Digital Object Identifier (DOI): 10.1109/TIP.2017.2695887.
- K. Song, Y. Tian, T. Huang, and W. Gao, "Diversifying the image retrieval results", In Proc. ACM Multimedia Conf., 2006, pp. 707-710.
- R. Leuken, L. Garcia, X. Olivares, and R. Zwol, "Visual diversification of image search results". In Proc. WWW Conf., 2009, pp.341-350.
- R. Cilibrasi, and P. Vitanyi, "The Google Similarity Distance". IEEE Trans. Knowledge and Data Engineering, 19(3):1065-1076, 2007.
- X. Qian, H. Wang, G. Liu, and X. Hou, "HWVP: Hierarchical Wavelet Packet Texture Descriptors and Their Applications in Scene Categorization and Semantic Concept Retrieval". Multimedia Tools and Applications, May 2012.
- X. Lu, Y. Yuan, X. Zheng, Jointly Dictionary Learning for Change Detection in Multispectral Imagery, IEEE Trans. Cybernetics, vol. 47, no. 4, pp. 884-897, 2017.
- J. Carbonell, and J. Goldstein, "The use of MMR, diversity based re-ranking for reordering documents and producing summaries". SIGIR 1998.
- Wu, J. Wu, and M. Lu, "A Two-Step Similarity Ranking Scheme for Image Retrieval. In Parallel Architectures". Algorithms and Programming, pp. 191-196, IEEE, 2014.
- G. Ding, Y. Guo, J. Zhou, et al., Large-Scale Cross-Modality Search via Collective Matrix Factorization Hashing. IEEE Transactions on Image Processing, 2016, 25(11): 5427-5440.
- G. Agrawal, and R. Chaudhary, "Relevancy tag ranking". In Computer and Communication Technology, pp. 169- 173, IEEE, 2011.[18] L. Chen, S. Zhu, and Z. Li, "Image retrieval via improved relevance ranking". In Control Conference, pp. 4620-4625, IEEE, 2014.
- L. Wu, and R. Jin, "Tag completion for image retrieval". Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(3), 716-727, 2013.
- Y. Yang, Y. Gao, H. Zhang, and J. Shao, "Image Tagging with Social Assistance". ICMR, 2014.
- L. Chen, D. Xua, and I. Tsang, "Tag-based image retrieval improved by augmented features and group-based refinement". Multimedia, IEEE Transactions on, 14(4), 1057-1067, 2012.
- Z. Lin Z, G. Ding, J. Han, et al., Cross-View Retrieval via Probability- Based Semantics-Preserving Hashing, IEEE Transactions on Cybernetics vol. PP, no.99, pp.1-14 doi: 10.1109/TCYB.2016.2608906.
- R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, "Diversifying search results". In WSDM, pages 5- 14, 2009.
- X. Li, "Tag relevance fusion for social image retrieval". CoRR abs/1410.3462, 2014.
- X. Qian, X. Liu, and C. Zheng, "Tagging photos using users' vocabularies". Neurocomputing, 111(111), 144-153, 2013.
- D. Mishra, "Tag Relevance for Social Image Retrieval in Accordance with Neighbor Voting Algorithm". IJCSNS, 14(7), 50, 2014.
- Y. Hu, M. Li, and N. Yu, "Multiple-instance ranking: Learning to rank images for image retrieval". In Computer Vision and Pattern Recognition, CVPR 2008. IEEE Conference on (pp. 1-8).
- F. Sun, M. Wang, and D. Wang, "Optimizing social image search with multiple criteria: Relevance, diversity, and typicality". Neurocomputing, 95, 40-47, 2012.
- B. Wang, Z. Li, and M. Li, "Large-scale duplicate detection for web image search". ICME 2006, pp. 353-356.
- R. Santos, C. Macdonald, and I. Ounis, "Exploiting query reformulations for Web search result diversification". In WWW, pages 881-890, 2010.
- A. Ksibi, G. Feki, and A. Ammar, "Effective Diversification for Ambiguous Queries in Social Image Retrieval". In Computer Analysis of Images and Patterns (pp. 571-578), 2013.
- Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, "Learning to hash with optimized anchor embedding for scalable retrieval," IEEE Trans. Image Processing, vol. 26, no. 3, pp. 1344-1354, 2017.
- C. Haruechaiyasak, and C. Damrongrat, "Improving social tag-based image retrieval with CBIR technique".
- Springer Berlin Heidelberg, 2010, pp. 212-215.
- X. Zhu, W. Nejdl, "An adaptive teleportation random walk model for learning social tag relevance".ACM SIGIR, pp. 223-232, 2014.
- J. Yu, D. Tao, and M. Wang, "Learning to Rank Using User Clicks and Visual Features for Image Retrieval". IEEE Trans.Cybern.(2014).
- S. Ji, K. Zhou, C. Liao, Z. Zheng, and G. Xue, "Global ranking by exploiting user clicks". ACM SIGIR, 2009, pp. 35-42.
- G. Dupret, "A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine". ACM international conference on Web search and data mining (pp. 181-190), 2010.
- X. Lu, X. Li, and L. Mou, Semi-Supervised Multi-task Learning for Scene Recognition, IEEE Trans. Cybernetics, vol. 45, no. 9, pp. 1967-1976, 2015.
- X. Hua, and M. Ye, "Mining knowledge from clicks: MSR- Bing image retrieval challenge". In Multimedia and Expo Workshops, 2014.
- X. Lu, X. Li, Multiresolution Imaging, IEEE Transactions on Cybernetics, vol. 44, no. 1, pp.149- 160, 2014.
- X. Qian, X. Hua, Y. Tang, and T. Mei, "social image tagging with diverse semantics". IEEE Trans. Cybernetics, vol.44, no.12,2014, pp. 2493-2508.
- X. Qian, D. Lu, X. Liu, "Tag based image retrieval by user- oriented ranking". ICMR, 2015.
- Y. Zhang, X. Qian, X. Tan, J. Han, Y. Tang:Sketch-Based Image Retrieval by Salient Contour Reinforcement. IEEE Trans. Multimedia 18(8): 1604-1615 (2016).
- Y. Gu, X. Qian, Q. Li, and et al.,"Image Annotation by Latent Community Detection and Multikernel Learning". IEEE Transactions on Image Processing 24(11): 3450-3463 (2015).
- X. Yang, X. Qian, and Y. Xue. "Scalable Mobile Image Retrieval by Exploring Contextual Saliency". IEEE Trans. Image Processing 24(6): 1709-1721 (2015).
- D. Lu, X. Liu, and X. Qian, "Tag based image search by social re-ranking". IEEE Transactions on Multimedia, vol.18, no.8, 2016, pp.1628-1639.
- X. Qian, Y. Xue, Y. Tang, and X. Hou, "Landmark Summarization with Diverse Viewpoints". IEEE Trans. Circuits and Systems for Video Technology, vol.25, no.11, 2015, pp.1857-1869.
- R. Santos, C. Macdonald, and I. Ounis, "Selectively diversifying web search results". ACM CIKM, 2010:1179- 1188.
- G. Qi, C. Aggarwal, and J. Han, "Mining Collective Intelligence in Diverse Groups", in Proc. WWW, 2013.
- X. Qian, X. Tan, Y. Zhang, R. Hong, and M. Wang, "Enhancing Sketch-Based Image Retrieval by Re-ranking and Relevance Feedback". IEEE Trans. Image Processing, vol.25, no.1, 2016, pp.195-208.
- B. Frey, and D. Dueck, "Clustering by passing messages between data points". Science, 2007, 315(5814): 972-976.
- K. Song, Y. Tian, W. Gao, and T. Huang, "Diversifying the image retrieval results". ACM MM. 2006:707-710.
- Y. Yan, G. Liu, S. Wang, and et al."Graph-based clustering and ranking for diversified image search". Multimedia Systems, 2014:
- X. Tian,et.al, "Image search reranking with hierarchical topic awareness".IEEE TRANSACTION ON CYBERNETICS, 2015.
- D. Dang-Nguyen, et.al, "Retrieval of Diversity Images by Pre-filtering and Hiearchical Clustering". MediaEval,2014.
- X. Qian, Y. Xue, Y. Tang, X. Hou, and T. Mei, "Landmark Summarization with Diverse Viewpoints". IEEE Trans. Circuits and Systems for Video Technology, vol.25, no.11, 2015, pp.1857-1869.
- H. Hou, X. Xu, G. Wang, and X. Wang, "Joint-Rerank: a novel method for image search reranking". Multimedia Tools and Applications,2015, 74(4):1423-1442.
- S. Liu, et.al, "social visual image reranking for web image search". MMM, 2013
- J. He, H. Tong, Q. Mei, and B. Szymanski, "GenDeR: A generic diversified ranking algorithm," Advances in Neural information process systems, 2012,2:1142-1150.
- H. Tong, J. He, Z. Wen, R. Konuru, and C. Lin, "Diversified ranking on large graphs: an optimization viewpoint", SIGKDD, 2011,1028-1036.
- X. Li, S. Liao, W. Lan, X. Du, and G. Yang, "Zero-shot Image Tagging by Hierarchical semantic embedding," ACM SIGIR, 2015:879-882.
- D. Zhang, J. Han, C. Li, J. Wang, and X. Li, Detection of Co-salient Objects by Looking Deep and Wide, International Journal of Computer Vision, 120(2): 215-232, 2016.
- D. Zhang, J. Han, J. Han, L. Shao, Cosaliency Detection Based on Intrasaliency Prior Transfer and Deep Intersaliency Mining, IEEE Trans. on Neural Networks and Learning Systems, 27(6): 1163-1176, 2016.
- S. Lee, and W. Neve, "Visually weighted neighbor voting for image tag relevance learning". Multimedia Tools and Applications, 1- 24, 2013.