Hierarchical Event Grounding
2023, Proceedings of the ... AAAI Conference on Artificial Intelligence
https://doi.org/10.1609/AAAI.V37I11.26576Abstract
Event grounding aims at linking mention references in text corpora to events from a knowledge base (KB). Previous work on this task focused primarily on linking to a single KB event, thereby overlooking the hierarchical aspects of events. Events in documents are typically described at various levels of spatio-temporal granularity. These hierarchical relations are utilized in downstream tasks of narrative understanding and schema construction. In this work, we present an extension to the event grounding task that requires tackling hierarchical event structures from the KB. Our proposed task involves linking a mention reference to a set of event labels from a subevent hierarchy in the KB. We propose a retrieval methodology that leverages event hierarchy through an auxiliary hierarchical loss. On an automatically created multilingual dataset from Wikipedia and Wikidata, our experiments demonstrate the effectiveness of the hierarchical loss against retrieve and re-rank baselines. Furthermore, we demonstrate the systems' ability to aid hierarchical discovery among unseen events.
References (23)
- Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011. Learning Structured Embeddings of Knowledge Bases. In Proceedings of the Twenty-Fifth National Conference on Artificial Intelligence, 301-306. Menlo Park, Calif.: AAAI Press.
- Botha, J. A.; Shan, Z.; and Gillick, D. 2020. Entity Link- ing in 100 Languages. In Proceedings of the 2020 Confer- ence on Empirical Methods in Natural Language Process- ing (EMNLP), 7833-7845. Online: Association for Compu- tational Linguistics.
- Chandu, K. R.; Bisk, Y.; and Black, A. W. 2021. Ground- ing 'Grounding' in NLP. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 4283-4305. Online: Association for Computational Linguistics.
- Chen, T.; Chen, Y.; and Van Durme, B. 2020. Hierarchical Entity Typing via Multi-level Learning to Rank. In Proceed- ings of the 58th Annual Meeting of the Association for Com- putational Linguistics, 8465-8475. Online: Association for Computational Linguistics.
- Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; and Stoyanov, V. 2020. Unsupervised Cross-lingual Rep- resentation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, 8440-8451. Online: Association for Computational Linguistics.
- Du, X.; Zhang, Z.; Li, S.; Yu, P.; Wang, H.; Lai, T.; Lin, X.; Wang, Z.; Liu, I.; Zhou, B.; Wen, H.; Li, M.; Hannan, D.; Lei, J.; Kim, H.; Dror, R.; Wang, H.; Regan, M.; Zeng, Q.; Lyu, Q.; Yu, C.; Edwards, C.; Jin, X.; Jiao, Y.; Kazeminejad, G.; Wang, Z.; Callison-Burch, C.; Bansal, M.; Vondrick, C.; Han, J.; Roth, D.; Chang, S.-F.; Palmer, M.; and Ji, H. 2022. RESIN-11: Schema-guided Event Prediction for 11 News- worthy Scenarios. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Compu- tational Linguistics: Human Language Technologies: Sys- tem Demonstrations, 54-63. Hybrid: Seattle, Washington + Online: Association for Computational Linguistics.
- Glavaš, G.; Šnajder, J.; Moens, M.-F.; and Kordjamshidi, P. 2014. HiEve: A Corpus for Extracting Event Hierarchies from News Stories. In Proceedings of the Ninth Interna- tional Conference on Language Resources and Evaluation (LREC'14), 3678-3683. Reykjavik, Iceland: European Lan- guage Resources Association (ELRA).
- Han, R.; Hsu, I.-H.; Sun, J.; Baylon, J.; Ning, Q.; Roth, D.; and Peng, N. 2021. ESTER: A Machine Reading Compre- hension Dataset for Reasoning about Event Semantic Rela- tions. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 7543-7559. On- line and Punta Cana, Dominican Republic: Association for Computational Linguistics.
- Ji, H.; and Grishman, R. 2011. Knowledge Base Population: Successful Approaches and Challenges. In Proceedings of the 49th Annual Meeting of the Association for Computa- tional Linguistics: Human Language Technologies, 1148- 1158. Portland, Oregon, USA: Association for Computa- tional Linguistics.
- Logeswaran, L.; Chang, M.-W.; Lee, K.; Toutanova, K.; De- vlin, J.; and Lee, H. 2019. Zero-Shot Entity Linking by Reading Entity Descriptions. In Proceedings of the 57th An- nual Meeting of the Association for Computational Linguis- tics, 3449-3460. Florence, Italy: Association for Computa- tional Linguistics.
- Mitamura, T.; Liu, Z.; and Hovy, E. H. 2017. Events Detec- tion, Coreference and Sequencing: What's next? Overview of the TAC KBP 2017 Event Track. In Proceedings of the 2017 Text Analysis Conference, TAC 2017. Gaithersburg, Maryland: NIST.
- Murty, S.; Verga, P.; Vilnis, L.; Radovanovic, I.; and McCal- lum, A. 2018. Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking. In Proceedings of the 56th Annual Meeting of the Association for Computa- tional Linguistics (Volume 1: Long Papers), 97-109. Mel- bourne, Australia: Association for Computational Linguis- tics.
- Ning, Q.; Wu, H.; and Roth, D. 2018. A Multi-Axis Annota- tion Scheme for Event Temporal Relations. In Proceedings of the 56th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), 1318-1328.
- Melbourne, Australia: Association for Computational Lin- guistics.
- Nothman, J.; Honnibal, M.; Hachey, B.; and Curran, J. R. 2012. Event Linking: Grounding Event Reference in a News Archive. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 228-232. Jeju Island, Korea: Association for Com- putational Linguistics.
- Onoe, Y.; Boratko, M.; McCallum, A.; and Durrett, G. 2021. Modeling Fine-Grained Entity Types with Box Embeddings. In Proceedings of the 59th Annual Meeting of the Associ- ation for Computational Linguistics and the 11th Interna- tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2051-2064. Online: Association for Computational Linguistics.
- Pratapa, A.; Gupta, R.; and Mitamura, T. 2022. Multilingual Event Linking to Wikidata. In Proceedings of the Workshop on Multilingual Information Access (MIA), 37-58. Seattle, USA: Association for Computational Linguistics.
- Song, Z.; Bies, A.; Strassel, S.; Riese, T.; Mott, J.; Ellis, J.; Wright, J.; Kulick, S.; Ryant, N.; and Ma, X. 2015. From Light to Rich ERE: Annotation of Entities, Relations, and Events. In Proceedings of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and Represen- tation, 89-98. Denver, Colorado: Association for Computa- tional Linguistics.
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and Bouchard, G. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings of the 33rd International Con- ference on International Conference on Machine Learning - Volume 48, ICML'16, 2071-2080. JMLR.org.
- Vilnis, L.; Li, X.; Murty, S.; and McCallum, A. 2018. Prob- abilistic Embedding of Knowledge Graphs with Box Lattice Measures. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 263-272. Melbourne, Australia: Association for Computational Linguistics.
- Walker, C.; Strassel, S.; Medero, J.; and Maeda, K. 2006. ACE 2005 Multilingual Training Corpus. Linguistic Data Consortium, Philadelphia, 57.
- Wu, L.; Petroni, F.; Josifoski, M.; Riedel, S.; and Zettle- moyer, L. 2020. Scalable Zero-shot Entity Linking with Dense Entity Retrieval. In Proceedings of the 2020 Confer- ence on Empirical Methods in Natural Language Process- ing (EMNLP), 6397-6407. Online: Association for Compu- tational Linguistics.
- Yu, X.; Yin, W.; Gupta, N.; and Roth, D. 2021. Event Linking: Grounding Event Mentions to Wikipedia. arXiv:2112.07888.