Academia.eduAcademia.edu

Outline

Complex Holomorphic Systems to Real Systems

2020, Vol. 35, No. 13, 2050065 (2020)

https://doi.org/10.1142/S0217751X20500657

Abstract

Symmetries in modern physics are a fundamental theme under study that allows to appreciate the Particle Physics. In addition, gauge theories are tools that allow to do a description more complete. With this paper, we analyze a gauge symmetry that appears in complex holomorphic systems. A complex system can be reduced to different real systems, using different gauge conditions and several real systems are connected by gauge transformations in the complex space. We prove that the space of solutions of one system is related to another one using a gauge transformation. Gauge transformations are in some cases canonical transformations. However, in other cases are more general transformations that change the symplectic structure, but there is still a map between systems. We establish a construction extend of gauge transformations and show how to extend the analysis to the quantum case using path integrals by means of the Batalin-Fradkin-Vilkovisky theorem and with in the canonical formalism, where we show explicitly that solutions of the Schrödinger equation are gauge related.

References (31)

  1. P. A. M. Dirac, Lectures on Quantum Mechanics, Dover, New York, (2001), 151.
  2. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992.
  3. e.g J Govaerts and FG Scholtz, Jnl. Phys. A 37 (2004) 7359 Greater clarification is required.
  4. V. N. Gribov, Nucl. Phys. B139 (1978)1.
  5. A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore 1991.
  6. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, (1998) 5243.
  7. Scholtz, HB Geyer and FJW Hahne, Ann. Phys. 213 (1992) 74 and CM Bender, Contemp.Phys.46 (2005) 277.
  8. N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge U. P., Cambridge (2011).
  9. R.Gilmore, Lie Groups, Lie Algebras and some of their applications, J. Wiley, New York (1974).
  10. C. A. Margalli and J. D. Vergara, Hidden Gauge Symmetry in Holomor- phic Models, Phys.Lett. A379 (2015) 2434.
  11. M. Moshinsky, C. Quesne, J. Math. Phys., 12, (1971), 772.
  12. FG Scholtz, HB Geyer and FJW Hahne, Ann. Phys. 213 (1992) 74
  13. H. A. Morales-Tecotl, L. F. Urrutia, and J. D. Vergara,
  14. R. Remmert, Theory of Complex Functions, Springer-Verlag, New York (1991).
  15. C.A. Margalli, J.D. Vergara, Quantization of the Interacting Non- Hermitian Higher Order Derivative Field, arXiv:1309.2928 [hep-th].
  16. P. Senjanovic, Ann. of Phys. 100 (1976) 227.
  17. A. Mostafazadeh, Phys. Lett. A 357 (2006) 177.
  18. T. E. Lee, F. Reiter and N. Moiseyev, Phys. Rev. Lett. 113 (2014) 250401.
  19. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. Lett. 100 (2008) 030402.
  20. Burgess and F. Quevedo. Nucl. Phys. B421 (1994) 373, Physics. Lett. B329 (1994) 457.
  21. N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999) 032.
  22. L. Alvarez-Gaumé, J. L. F. Barbón, and R. Zwicky, J. High Energy Phys. 05 (2001) 057.
  23. A. Ashtekar, Mathematical problems of nonperturbative quantum gen- eral relativity, (1992) [gr-qc/9302024].
  24. G. Esposito, D. N. Pelliccia and F. Zaccaria, Int. J. of Geom. Meth. in Mod. Phys. 1 (2004) 423.
  25. V. de Alfaro, S. Fubini and G. Furlan, Il Nuovo Cim, 34A (1976) 569.
  26. I. Bars, Class. Quantum Grav. 18 (2001) 3113.
  27. E. Álvarez, J.M. Garcia-Bondía and C.P. Martín, Parameter restrictions in a non-commutative geometry model do not survive standard quantum corrections, Phys.Lett. B306, (1993) 55.
  28. E. S. Fradkin and G. A. Vilkovisky, CERN Report TH-2332 (1977).
  29. M. Heneaux, Hamiltonian form of the path integral for theories with gauge freedom. Phys. Rep. 126, 1-66 (1985).
  30. N. Seiberg and E. Witten, String Theory and Noncommutative Geom- etry, JHEP 9909 (1999) 032, hep-th/9908142.
  31. S.M. Carroll, J.A. Harvey, V.A Kostelecky, C.D. Lane, T. Okamoto, Noncommutative Field Theory and Lorentz Violation, Phys.Rev.Lett. 87 (2001) 141601, hep-th/0105082.