Academia.eduAcademia.edu

Outline

On the approximation of the spectrum of the Stokes operator

1989, ESAIM: Mathematical Modelling and Numerical Analysis

Abstract

On the approximation of the spectrum of the Stokes operator RAIRO -Modélisation mathématique et analyse numérique, tome 23, n o 1 (1989), p. 129-136. <http © AFCET, 1989, tous droits réservés. L'accès aux archives de la revue « RAIRO -Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques am MATHEMATICAL MOOEUJNG AND NUMERICAL ANALYSIS .'UI MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

References (14)

  1. K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice- Hall, 1982, Englewood Cliffs, NJ.
  2. M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. vol. 23, n° 1, 1989
  3. C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50.
  4. C. CANUTO, A hybrid finite element method to compute the free vibration frequenties of a damped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118.
  5. V. GIRAULT and P.-A. RAVIART, Finite Element Approximation ofthe Navier- Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin.
  6. D. F. GRIFFITHS, Finite éléments for incompressible flows, Math. Meth. in the Appl. Sci. 1 (1979), 16-31.
  7. D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346.
  8. B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation o f mixed and hybrid methods, Math. Compt. 36 (1981), 427-453.
  9. J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-329.
  10. J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes équations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634.
  11. G. STRANG and G. F. Fix, An Analysis ofthe Finite Element Method, Prentice- Hall, 1973, Englewood Cliffs, NJ.
  12. R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford.
  13. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Régional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia.
  14. F. THOMASSET, Implementation of the Finite Element Methods for Navier- Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin.