Academia.eduAcademia.edu

Outline

Height pairings on Shimura curves and p-adic uniformization

2000, Inventiones Mathematicae

References (22)

  1. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
  2. J.-F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld, in: Courbes modulaires et courbes de Shimura, Astérisque 196-197, 1991, pp. 45-158.
  3. P. Deligne, Intersections sur les surfaces régulières, exposé X, in P. Deligne and N. Katz, SGA 7, II: Groupes de monodromie en géométrie algébrique, SLN 340, Springer 1973, 1-38.
  4. P. Deligne, La classe de cohomologie associée à un cycle par A. Grothendieck, in P. Deligne: SGA 4 1 2 , SLN 569, Springer 1973, 129-153.
  5. V. G. Drinfeld, Coverings of p-adic symmetric regions, Funct. Anal. Appl. 10 (1977), 29-40.
  6. A. Genestier, Espaces Symétriques de Drinfeld, Astérisque 234, 1996.
  7. A. Genestier, Letter to M. Rapoport, August 12, 1996.
  8. B. H. Gross, On canonical and quasi-canonical liftings, Inventiones math. 84 (1986), 321-326.
  9. B. H. Gross and K. Keating, On the intersection of modular correspondences, Inventiones math. 112 (1993), 225-245.
  10. H. Katsurada, An explicit formula for the Fourier coefficients of Siegel-Eisenstein series, preprint (1997).
  11. Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92 (1983), 145-152.
  12. Y. Kitaoka, Fourier coefficients of Eisenstein series of degree 3, Proc. Japan Acad. 60 (1984), 259-261.
  13. R. Kottwitz, Points on some Shimura varieties over finite fields, JAMS 5 (1992), 373-444.
  14. R. Kottwitz, Calculation of some orbital integrals, R.P. Langlands and D. Ramakrishnan (ed.), The zeta functions of Picard modular surfaces, Publ. CRM. Montreal (1992), 349-362.
  15. S. Kudla, Central derivatives of Eisenstein series and height pairings, Annals of Math. 146 (1997), 545-646.
  16. S. Kudla and M. Rapoport, Cycles on Siegel 3-folds and derivatives of Eisen- stein series, preprint (1997).
  17. S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles, in prepara- tion.
  18. B. Myers, Local representation densities of non-unimodular quadratic forms, thesis, University of Maryland (1994).
  19. M. Rapoport and T. Zink, Periods of p-divisible groups, Annals of Math. Stud- ies 141, Princeton U. Press, Princeton, NJ, 1996.
  20. Tonghai Yang, An explicit formula for local densities of quadratic forms, to appear in J. Number Theory.
  21. T. Zink, Über die schlechte Reduktion einiger Shimuramannigfaltigkeiten, Com- positio Math. 45 (1981), 15-107.
  22. Stephen S. Kudla Michael Rapoport Department of Mathematics Mathematisches Institut University of Maryland der Universität zu Köln College Park, MD 20742 Weyertal 86-90 D -50931 Köln USA Germany