Academia.eduAcademia.edu

Outline

Symbolic Computations in Higher Dimensional Clifford Algebras

2012, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1206.3683

Abstract

We present different methods for symbolic computer algebra computations in higher dimensional (≥ 9) Clifford algebras using the CLIFFORD and Bigebra packages for Maple R . This is achieved using graded tensor decompositions, periodicity theorems and matrix spinor representations over Clifford numbers. We show how to code the graded algebra isomorphisms and the main involutions, and we provide some benchmarks.

References (17)

  1. Abłamowicz, R.: Clifford algebra computations with Maple. In: Baylis, W. E. (ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering, pp. 463- 502, Birkhäuser, Boston (1996)
  2. Computations with Clifford and Grassmann algebras. Adv. Applied Clifford Alge- bras 19, No. 3-4, 499-545 (2009)
  3. Abłamowicz, R., Fauser, B.: CLIFFORD with Bigebra -A Maple Pack- age for Computations with Clifford and Grassmann Algebras (2012), http://math.tntech.edu/rafal/. Cited June 10, 2012
  4. Clifford and Grassmann Hopf algebras via the Bigebra package for Maple. Com- puter Physics Communications 170, 115-130 (2005), math-ph/0212032
  5. Mathematics of CLIFFORD -A Maple Package for Clifford and Grassmann Alge- bras. Adv. in Applied Clifford Algebras 15, No. 2 (2005), 157-181, math-ph/0212031. 6. : Maple worksheets created with CLIFFORD for verification of the results presented in this paper (2012), http://math.tntech.edu/rafal/publications.html. Cited June 10, 2012
  6. Bayro-Corrochano, E.: Private communication (2012)
  7. Anglés, P: The structure of the Clifford algebra. Adv. Applied Clifford Algebras 19, No. 3-4, 585-610 (2009)
  8. Atiyah, M. F., Bott, R., Shapiro, A.: Clifford Modules. Topology Vol. 3, Suppl. 1 (1964), 3-38
  9. Budinich, P., Trautmann, A.: The Spinorial Chessboard. Springer-Verlag, Berlin (1988)
  10. Cartan, E. (exposé d'après l'article allemand de E. Study): Nombres complexes. In Molk, J. (ed.), Encyclopédie des sciences mathématiques, pp. 329-468, Tome I, Vol. 1, Fasc. 4, art. 15 (1908). Reprinted in Cartan, E.: OEuvres complètes, pp. 107-246, Partie II, Gauthier-Villars, Paris (1953)
  11. Coquereaux, R.: Clifford Algebras, Spinors and Fundamental Interactions: Twenty Years Later. Adv. in Applied Clifford Algebras 19, No. 3-4 (2009), 673-686
  12. Fauser, B., Abłamowicz, R.: On the decomposition of Clifford algebras of arbitrary bilinear form. In: Abłamowicz, R., Fauser, B. (eds.) Clifford Algebras and their Applications in Math- ematical Physics, pp. 341-366, Birkhäuser, Boston (2000), math.QA/9911180
  13. Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birkhäuser, Boston (2008)
  14. Lam, T. Y.: The Algebraic Theory of Quadratic Forms, The Benjamin/Cummings, Reading, MA (1973)
  15. Lounesto, P.: Clifford Algebras and Spinors, 2nd ed. Cambridge University Press, Cambridge (2001)
  16. Maks, J.: Modulo (1,1) periodicity of Clifford algebras and the generalized (anti-) Möbius transformations. Ph.D. Thesis, TU Delft (1989)
  17. Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cam- bridge (1995)