Academia.eduAcademia.edu

Outline

Prospects for precise predictions of $a_\mu$ in the Standard Model

2022, HAL (Le Centre pour la Communication Scientifique Directe)

https://doi.org/10.48550/ARXIV.2203.15810

Abstract

We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon g -2 Theory Initiative to update the Standard Model prediction. Prospects for precise predictions of a µ in the SM Contribution Value ×10 11 References Experiment (E821 + E989) 116 592 061(41) Refs.

References (234)

  1. B. Abi et al. (Muon g -2), Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281 [hep-ex].
  2. T. Albahri et al. (Muon g -2), Phys. Rev. A 103, 042208 (2021), arXiv:2104.03201 [hep-ex].
  3. T. Albahri et al. (Muon g -2), Phys. Rev. Accel. Beams 24, 044002 (2021), arXiv:2104.03240 [physics.acc-ph].
  4. T. Albahri et al. (Muon g -2), Phys. Rev. D 103, 072002 (2021), arXiv:2104.03247 [hep-ex].
  5. G. W. Bennett et al. (Muon g -2), Phys. Rev. D 73, 072003 (2006), arXiv:hep- ex/0602035.
  6. T. Aoyama et al., Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph]. Prospects for precise predictions of a µ in the SM
  7. "Muon g -2 Theory Initiative," https://muon-gm2-theory.illinois.edu/.
  8. "First Workshop of the Muon g -2 Theory Initiative," https://indico.fnal.gov/ event/13795/ (2017), held at Fermilab, St. Charles, IL, USA, June 3-6.
  9. "Workshop on Hadronic Vacuum Polarization Contributions to Muon g -2," https: //www-conf.kek.jp/muonHVPws/ (2018), held at KEK, Tsukuba, Japan, February 12-14.
  10. "Muon g -2 Theory Initiative Hadronic Light-by-Light working group workshop," https://indico.phys.uconn.edu/event/1/ (2018), held at University of Con- necticut, Storrs, CT, USA, March 12-14.
  11. "Second Workshop of the Muon g -2 Theory Initiative," https://wwwth.kph. uni-mainz.de/g-2/ (2018), held at the Helmholtz Institute Mainz, University of Mainz, Mainz, Germany, June 18-22.
  12. "Hadronic contributions to (g -2) µ ," https://indico.fnal.gov/event/21626/ (2019), held at the Institute for Nuclear Theory, University of Washington, Seat- tle, WA, USA, September 9-13.
  13. J. Grange et al. (Muon g -2), (2015), arXiv:1501.06858 [physics.ins-det].
  14. M. Abe et al., PTEP 2019, 053C02 (2019), arXiv:1901.03047 [physics.ins-det].
  15. M. Aiba et al., (2021), arXiv:2111.05788 [hep-ex].
  16. "Potential Fermilab Muon Campus & Storage Ring Experiments," https://indico. fnal.gov/event/48469/ (2021), virtual workshop hosted at Fermilab, Batavia, IL, May 24-27.
  17. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017), arXiv:1706.09436 [hep-ph].
  18. A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018), arXiv:1802.02995 [hep-ph].
  19. G. Colangelo, M. Hoferichter, and P. Stoffer, JHEP 02, 006 (2019), arXiv:1810.00007 [hep-ph].
  20. M. Hoferichter, B.-L. Hoid, and B. Kubis, JHEP 08, 137 (2019), arXiv:1907.01556 [hep-ph].
  21. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020), [Erratum: Eur. Phys. J. C 80, 410 (2020)], arXiv:1908.00921 [hep-ph].
  22. A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020), arXiv:1911.00367 [hep-ph].
  23. A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014), arXiv:1403.6400 [hep-ph].
  24. B. Chakraborty et al. (Fermilab Lattice, HPQCD, MILC), Phys. Rev. Lett. 120, 152001 (2018), arXiv:1710.11212 [hep-lat].
  25. S. Borsanyi et al. (Budapest-Marseille-Wuppertal), Phys. Rev. Lett. 121, 022002 (2018), arXiv:1711.04980 [hep-lat].
  26. T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang (RBC, UKQCD), Phys. Rev. Lett. 121, 022003 (2018), arXiv:1801.07224 [hep-lat].
  27. D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and S. Simula, Phys. Rev. D 99, 114502 (2019), arXiv:1901.10462 [hep-lat].
  28. E. Shintani and Y. Kuramashi (PACS), Phys. Rev. D 100, 034517 (2019), arXiv:1902.00885 [hep-lat].
  29. C. T. H. Davies et al. (Fermilab Lattice, HPQCD, MILC), Phys. Rev. D 101, 034512 (2020), arXiv:1902.04223 [hep-lat].
  30. A. Gérardin, M. Cè, G. von Hippel, B. Hörz, H. B. Meyer, D. Mohler, K. Ottnad, J. Wilhelm, and H. Wittig, Phys. Rev. D 100, 014510 (2019), arXiv:1904.03120 [hep-lat].
  31. C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung, and S. Peris, Phys. Rev. D 101, 014503 (2020), arXiv:1905.09307 [hep-lat].
  32. D. Giusti and S. Simula, PoS LATTICE2019, 104 (2019), arXiv:1910.03874 [hep- lat].
  33. K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004), arXiv:hep- ph/0312226.
  34. P. Masjuan and P. Sánchez-Puertas, Phys. Rev. D 95, 054026 (2017), arXiv:1701.05829 [hep-ph].
  35. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04, 161 (2017), arXiv:1702.07347 [hep-ph].
  36. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, JHEP 10, 141 (2018), arXiv:1808.04823 [hep-ph].
  37. A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D 100, 034520 (2019), arXiv:1903.09471 [hep-lat].
  38. J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez, Phys. Lett. B 798, 134994 (2019), arXiv:1908.03331 [hep-ph].
  39. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, JHEP 03, 101 (2020), arXiv:1910.13432 [hep-ph].
  40. V. Pauk and M. Vanderhaeghen, Eur. Phys. J. C 74, 3008 (2014), arXiv:1401.0832 [hep-ph].
  41. I. Danilkin and M. Vanderhaeghen, Phys. Rev. D 95, 014019 (2017), arXiv:1611.04646 [hep-ph].
  42. F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Vol. 274 (Springer, Cham, 2017).
  43. M. Knecht, S. Narison, A. Rabemananjara, and D. Rabetiarivony, Phys. Lett. B 787, 111 (2018), arXiv:1808.03848 [hep-ph].
  44. G. Eichmann, C. S. Fischer, and R. Williams, Phys. Rev. D 101, 054015 (2020), arXiv:1910.06795 [hep-ph].
  45. P. Roig and P. Sánchez-Puertas, Phys. Rev. D 101, 074019 (2020), arXiv:1910.02881 [hep-ph].
  46. G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Phys. Lett. B 735, 90 (2014), arXiv:1403.7512 [hep-ph].
  47. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. Lett. 124, 132002 (2020), arXiv:1911.08123 [hep-lat].
  48. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012), arXiv:1205.5370 [hep-ph].
  49. T. Aoyama, T. Kinoshita, and M. Nio, Atoms 7, 28 (2019).
  50. A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003), [Erratum: Phys. Rev. D 73, 119901 (2006)], arXiv:hep-ph/0212229.
  51. C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013), arXiv:1306.5546 [hep-ph].
  52. J. Z. Bai et al. (BES), Phys. Rev. Lett. 84, 594 (2000), arXiv:hep-ex/9908046.
  53. R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B 476, 33 (2000), arXiv:hep- ex/0002017.
  54. R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B 489, 125 (2000), arXiv:hep- ex/0009013.
  55. M. N. Achasov et al., Phys. Rev. D 63, 072002 (2001), arXiv:hep-ex/0009036.
  56. J. Z. Bai et al. (BES), Phys. Rev. Lett. 88, 101802 (2002), arXiv:hep-ex/0102003.
  57. M. N. Achasov et al., Phys. Rev. D 66, 032001 (2002), arXiv:hep-ex/0201040. Prospects for precise predictions of a µ in the SM
  58. R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B 578, 285 (2004), arXiv:hep- ex/0308008.
  59. B. Aubert et al. (BaBar), Phys. Rev. D 70, 072004 (2004), arXiv:hep-ex/0408078.
  60. B. Aubert et al. (BaBar), Phys. Rev. D 71, 052001 (2005), arXiv:hep-ex/0502025.
  61. B. Aubert et al. (BaBar), Phys. Rev. D 73, 012005 (2006), arXiv:hep-ex/0512023.
  62. B. Aubert et al. (BaBar), Phys. Rev. D 73, 052003 (2006), arXiv:hep-ex/0602006.
  63. V. M. Aul'chenko et al. (CMD-2), JETP Lett. 82, 743 (2005), arXiv:hep-ex/0603021.
  64. M. N. Achasov et al., J. Exp. Theor. Phys. 103, 380 (2006), arXiv:hep-ex/0605013.
  65. V. M. Aul'chenko et al., JETP Lett. 84, 413 (2006), arXiv:hep-ex/0610016.
  66. R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B 648, 28 (2007), arXiv:hep- ex/0610021.
  67. R. R. Akhmetshin et al., Phys. Lett. B 642, 203 (2006).
  68. B. Aubert et al. (BaBar), Phys. Rev. D 76, 012008 (2007), arXiv:0704.0630 [hep- ex].
  69. B. Aubert et al. (BaBar), Phys. Rev. D 76, 092005 (2007), [Erratum: Phys. Rev. D 77, 119902 (2008)], arXiv:0708.2461 [hep-ex].
  70. B. Aubert et al. (BaBar), Phys. Rev. D 76, 092006 (2007), arXiv:0709.1988 [hep- ex].
  71. B. Aubert et al. (BaBar), Phys. Rev. D 77, 092002 (2008), arXiv:0710.4451 [hep- ex].
  72. R. R. Akhmetshin et al. (CMD-2), Phys. Lett. B 669, 217 (2008), arXiv:0804.0178 [hep-ex].
  73. F. Ambrosino et al. (KLOE), Phys. Lett. B 670, 285 (2009), arXiv:0809.3950 [hep- ex].
  74. M. Ablikim et al. (BES), Phys. Lett. B 677, 239 (2009), arXiv:0903.0900 [hep-ex].
  75. B. Aubert et al. (BaBar), Phys. Rev. Lett. 103, 231801 (2009), arXiv:0908.3589 [hep-ex].
  76. F. Ambrosino et al. (KLOE), Phys. Lett. B 700, 102 (2011), arXiv:1006.5313 [hep- ex].
  77. J. P. Lees et al. (BaBar), Phys. Rev. D 86, 012008 (2012), arXiv:1103.3001 [hep-ex].
  78. J. P. Lees et al. (BaBar), Phys. Rev. D 85, 112009 (2012), arXiv:1201.5677 [hep-ex].
  79. J. P. Lees et al. (BaBar), Phys. Rev. D 86, 032013 (2012), arXiv:1205.2228 [hep-ex].
  80. D. Babusci et al. (KLOE), Phys. Lett. B 720, 336 (2013), arXiv:1212.4524 [hep-ex].
  81. R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B 723, 82 (2013), arXiv:1302.0053 [hep-ex].
  82. J. P. Lees et al. (BaBar), Phys. Rev. D 87, 092005 (2013), arXiv:1302.0055 [hep-ex].
  83. J. P. Lees et al. (BaBar), Phys. Rev. D 88, 072009 (2013), arXiv:1308.1795 [hep-ex].
  84. J. P. Lees et al. (BaBar), Phys. Rev. D 89, 092002 (2014), arXiv:1403.7593 [hep-ex].
  85. M. N. Achasov et al., Phys. Rev. D 90, 112007 (2014), arXiv:1410.3188 [hep-ex].
  86. V. M. Aulchenko et al. (SND), Phys. Rev. D 91, 052013 (2015), arXiv:1412.1971 [hep-ex].
  87. R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B 759, 634 (2016), arXiv:1507.08013 [hep-ex].
  88. M. Ablikim et al. (BESIII), Phys. Lett. B 753, 629 (2016), [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv:1507.08188 [hep-ex].
  89. D. N. Shemyakin et al., Phys. Lett. B 756, 153 (2016), arXiv:1510.00654 [hep-ex].
  90. V. V. Anashin et al., Phys. Lett. B 753, 533 (2016), arXiv:1510.02667 [hep-ex].
  91. M. N. Achasov et al. (SND), Phys. Rev. D 93, 092001 (2016), arXiv:1601.08061 [hep-ex].
  92. M. N. Achasov et al., Phys. Rev. D 94, 112006 (2016), arXiv:1608.08757 [hep-ex].
  93. J. P. Lees et al. (BaBar), Phys. Rev. D 95, 092005 (2017), arXiv:1704.05009 [hep- ex].
  94. R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B 773, 150 (2017), arXiv:1706.06267 [hep-ex].
  95. J. P. Lees et al. (BaBar), Phys. Rev. D 96, 092009 (2017), arXiv:1709.01171 [hep- ex].
  96. E. A. Kozyrev et al., Phys. Lett. B 779, 64 (2018), arXiv:1710.02989 [hep-ex].
  97. A. Anastasi et al. (KLOE-2), JHEP 03, 173 (2018), arXiv:1711.03085 [hep-ex].
  98. M. N. Achasov et al., Phys. Rev. D 97, 032011 (2018), arXiv:1711.07143 [hep-ex].
  99. T. Xiao, S. Dobbs, A. Tomaradze, K. K. Seth, and G. Bonvicini, Phys. Rev. D 97, 032012 (2018), arXiv:1712.04530 [hep-ex].
  100. J. P. Lees et al. (BaBar), Phys. Rev. D 97, 052007 (2018), arXiv:1801.02960 [hep- ex].
  101. V. V. Anashin et al. (KEDR), Phys. Lett. B 788, 42 (2019), arXiv:1805.06235 [hep- ex].
  102. M. N. Achasov et al., Phys. Rev. D 98, 112001 (2018), arXiv:1809.07631 [hep-ex].
  103. J. P. Lees et al. (BaBar), Phys. Rev. D 98, 112015 (2018), arXiv:1810.11962 [hep- ex].
  104. R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B 792, 419 (2019), arXiv:1902.06449 [hep-ex].
  105. H. J. Behrend et al. (CELLO), Z. Phys. C 49, 401 (1991).
  106. J. Gronberg et al. (CLEO), Phys. Rev. D 57, 33 (1998), arXiv:hep-ex/9707031.
  107. M. Acciarri et al. (L3), Phys. Lett. B 418, 399 (1998).
  108. P. Achard et al. (L3), Phys. Lett. B 526, 269 (2002), arXiv:hep-ex/0110073.
  109. P. Achard et al. (L3), JHEP 03, 018 (2007).
  110. R. Arnaldi et al. (NA60), Phys. Lett. B 677, 260 (2009), arXiv:0902.2547 [hep-ph].
  111. B. Aubert et al. (BaBar), Phys. Rev. D 80, 052002 (2009), arXiv:0905.4778 [hep- ex].
  112. P. del Amo Sánchez et al. (BaBar), Phys. Rev. D 84, 052001 (2011), arXiv:1101.1142 [hep-ex].
  113. H. Berghäuser et al., Phys. Lett. B 701, 562 (2011).
  114. S. Uehara et al. (Belle), Phys. Rev. D 86, 092007 (2012), arXiv:1205.3249 [hep-ex].
  115. D. Babusci et al. (KLOE-2), JHEP 01, 119 (2013), arXiv:1211.1845 [hep-ex].
  116. P. Aguar-Bartolome et al. (A2), Phys. Rev. C 89, 044608 (2014), arXiv:1309.5648 [hep-ex].
  117. M. Ablikim et al. (BESIII), Phys. Rev. D 92, 012001 (2015), arXiv:1504.06016 [hep- ex].
  118. M. Masuda et al. (Belle), Phys. Rev. D 93, 032003 (2016), arXiv:1508.06757 [hep- ex].
  119. R. Arnaldi et al. (NA60), Phys. Lett. B 757, 437 (2016), arXiv:1608.07898 [hep-ex].
  120. P. Adlarson et al. (A2), Phys. Rev. C 95, 035208 (2017), arXiv:1609.04503 [hep-ex].
  121. P. Adlarson et al. (A2), Phys. Rev. C 95, 025202 (2017), arXiv:1611.04739 [hep-ex].
  122. C. Lazzeroni et al. (NA62), Phys. Lett. B 768, 38 (2017), arXiv:1612.08162 [hep- ex].
  123. J. P. Lees et al. (BaBar), Phys. Rev. D 98, 112002 (2018), arXiv:1808.08038 [hep- ex].
  124. I. Larin et al. (PrimEx-II), Science 368, 506 (2020).
  125. T. Blum, S. Chowdhury, M. Hayakawa, and T. Izubuchi, Phys. Rev. Lett. 114, 012001 (2015), arXiv:1407.2923 [hep-lat].
  126. J. Green, N. Asmussen, O. Gryniuk, G. von Hippel, H. B. Meyer, A. Nyffeler, and V. Pascalutsa, PoS LATTICE2015, 109 (2016), arXiv:1510.08384 [hep-lat].
  127. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C. Lehner, Phys. Rev. D 93, 014503 (2016), arXiv:1510.07100 [hep-lat].
  128. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. Lett. 118, 022005 (2017), arXiv:1610.04603 [hep-lat].
  129. N. Asmussen, J. Green, H. B. Meyer, and A. Nyffeler, PoS LATTICE2016, 164 (2016), arXiv:1609.08454 [hep-lat].
  130. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. D 96, 034515 (2017), arXiv:1705.01067 [hep-lat].
  131. N. Asmussen, E.-H. Chao, A. Gérardin, J. R. Green, R. J. Hudspith, H. B. Meyer, and A. Nyffeler, PoS LATTICE2019, 195 (2019), arXiv:1911.05573 [hep-lat].
  132. R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science 360, 191 (2018), arXiv:1812.04130 [physics.atom-ph].
  133. L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, Nature 588, 61 (2020).
  134. M. Hoferichter and T. Teubner, Phys. Rev. Lett. 128, 112002 (2022), arXiv:2112.06929 [hep-ph].
  135. S. Borsanyi et al., Nature 593, 51 (2021), arXiv:2002.12347 [hep-lat].
  136. A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Phys. Rev. Lett. 125, 091801 (2020), arXiv:2003.04886 [hep-ph].
  137. A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Phys. Rev. D 102, 033002 (2020), arXiv:2006.12666 [hep-ph].
  138. B. Malaescu and M. Schott, Eur. Phys. J. C 81, 46 (2021), arXiv:2008.08107 [hep- ph].
  139. G. Colangelo, M. Hoferichter, and P. Stoffer, Phys. Lett. B 814, 136073 (2021), arXiv:2010.07943 [hep-ph].
  140. Prospects for precise predictions of a µ in the SM
  141. M. Cè, A. Gérardin, G. von Hippel, H. B. Meyer, K. Miura, K. Ottnad, A. Risch, T. S. José, J. Wilhelm, and H. Wittig, (2022), arXiv:2203.08676 [hep-lat].
  142. J. Prades, E. de Rafael, and A. Vainshtein, Adv. Ser. Direct. High Energy Phys. 20, 303 (2009), arXiv:0901.0306 [hep-ph].
  143. A. Nyffeler, Phys. Rev. D 79, 073012 (2009), arXiv:0901.1172 [hep-ph].
  144. F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1 (2009), arXiv:0902.3360 [hep- ph].
  145. E.-H. Chao, R. J. Hudspith, A. Gérardin, J. R. Green, H. B. Meyer, and K. Ottnad, Eur. Phys. J. C 81, 651 (2021), arXiv:2104.02632 [hep-lat].
  146. M. Benayoun, L. Delbuono, and F. Jegerlehner, Eur. Phys. J. C 80, 81 (2020), [Erratum: Eur. Phys. J. C 80, 244 (2020)], arXiv:1903.11034 [hep-ph].
  147. C. Lehner and A. S. Meyer, Phys. Rev. D 101, 074515 (2020), arXiv:2003.04177 [hep-lat].
  148. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961).
  149. S. J. Brodsky and E. De Rafael, Phys. Rev. 168, 1620 (1968).
  150. B. Ananthanarayan, I. Caprini, and D. Das, Phys. Rev. D 98, 114015 (2018), arXiv:1810.09265 [hep-ph].
  151. F. Campanario, H. Czyż, J. Gluza, T. Jeliński, G. Rodrigo, S. Tracz, and D. Zhuridov, Phys. Rev. D 100, 076004 (2019), arXiv:1903.10197 [hep-ph].
  152. M. N. Achasov et al. (SND), JHEP 01, 113 (2021), arXiv:2004.00263 [hep-ex].
  153. M. Ablikim et al. (BESIII), (2019), arXiv:1912.11208 [hep-ex].
  154. J. P. Lees et al. (BaBar), Phys. Rev. D 104, 112003 (2021), arXiv:2110.00520 [hep- ex].
  155. B.-L. Hoid, M. Hoferichter, and B. Kubis, Eur. Phys. J. C 80, 988 (2020), arXiv:2007.12696 [hep-ph].
  156. D. Stamen, D. Hariharan, M. Hoferichter, B. Kubis, and P. Stoffer, (2022), arXiv:2202.11106 [hep-ph].
  157. G. Abbiendi et al., (2022), arXiv:2201.12102 [hep-ph].
  158. S. Actis et al. (Working Group on Radiative Corrections, Monte Carlo Generators for Low Energies), Eur. Phys. J. C 66, 585 (2010), arXiv:0912.0749 [hep-ph].
  159. C. Aubin, T. Blum, M. Golterman, and S. Peris, in 38th International Symposium on Lattice Field Theory (2021) arXiv:2110.03408 [hep-lat].
  160. D. Giusti and S. Simula, in 38th International Symposium on Lattice Field Theory (2021) arXiv:2111.15329 [hep-lat].
  161. S. Lahert, C. DeTar, A. X. El-Khadra, E. Gámiz, S. Gottlieb, A. Kronfeld, E. Neil, C. T. Peterson, and R. Van de Water (Fermilab Lattice, HPQCD, MILC), in 38th International Symposium on Lattice Field Theory (2021) arXiv:2112.11647 [hep-lat].
  162. A. Bazavov et al. (Fermilab Lattice, HPQCD, MILC), in 38th International Symposium on Lattice Field Theory (2021) arXiv:2112.11339 [hep-lat].
  163. A. Risch and H. Wittig, in 38th International Symposium on Lattice Field Theory (2021) arXiv:2112.00878 [hep-lat].
  164. F. Erben, J. R. Green, D. Mohler, and H. Wittig, Phys. Rev. D 101, 054504 (2020), arXiv:1910.01083 [hep-lat].
  165. M. Bruno, T. Izubuchi, C. Lehner, and A. S. Meyer, PoS LATTICE2019, 239 (2019), arXiv:1910.11745 [hep-lat].
  166. T. Harris, M. Cè, H. B. Meyer, A. Toniato, and C. Török, PoS LATTICE2021, 572 (2021), arXiv:2111.07948 [hep-lat].
  167. G. Colangelo, M. Hoferichter, B. Kubis, M. Niehus, and J. R. de Elvira, Phys. Lett. B 825, 136852 (2022), arXiv:2110.05493 [hep-ph].
  168. D. Boito, M. Golterman, K. Maltman, and S. Peris, (2022), arXiv:2203.05070 [hep- ph].
  169. "Fifth Plenary Workshop of the Muon g -2 The- ory Initiative," https://higgs.ph.ed.ac.uk/workshops/ fifth-plenary-workshop-of-the-muon-g-2-theory-initiative/ (2022), to be held at the Higgs Centre for Theoretical Physics, Edinburgh, UK, September 5-9.
  170. "Fourth Plenary Workshop of the Muon g -2 Theory Initiative," https://www-conf. kek.jp/muong-2theory/ (2021), held virtually at KEK, Tsukuba, Japan, June 28- July 2.
  171. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 09, 091 (2014), arXiv:1402.7081 [hep-ph].
  172. G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, and P. Stoffer, Phys. Lett. B 738, 6 (2014), arXiv:1408.2517 [hep-ph].
  173. V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014), arXiv:1409.0819 [hep-ph].
  174. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 09, 074 (2015), arXiv:1506.01386 [hep-ph].
  175. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, Phys. Rev. Lett. 121, 112002 (2018), arXiv:1805.01471 [hep-ph].
  176. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, Phys. Rev. Lett. 118, 232001 (2017), arXiv:1701.06554 [hep-ph].
  177. S. Holz, J. Plenter, C. W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, and A. Wirzba, Eur. Phys. J. C 81, 1002 (2021), arXiv:1509.02194 [hep-ph].
  178. S. Holz, C. Hanhart, M. Hoferichter, and B. Kubis, (2022), arXiv:2202.05846 [hep- ph].
  179. S. Burri et al., 38th International Symposium on Lattice Field Theory, (2021), arXiv:2112.03586 [hep-lat].
  180. A. Gérardin, J. N. Guenther, L. Varnhorst, and W. E. A. Verplanke (Budapest- Marseille-Wuppertal), 38th International Symposium on Lattice Field Theory, (2021), arXiv:2112.08101 [hep-lat].
  181. A. Miramontes, A. Bashir, K. Raya, and P. Roig, (2021), arXiv:2112.13916 [hep- ph].
  182. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, Phys. Rev. D 101, 051501 (2020), arXiv:1910.11881 [hep-ph].
  183. I. Danilkin, M. Hoferichter, and P. Stoffer, Phys. Lett. B 820, 136502 (2021), arXiv:2105.01666 [hep-ph].
  184. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, Eur. Phys. J. C 81, 702 (2021), arXiv:2106.13222 [hep-ph].
  185. J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A. Rodríguez-Sánchez, JHEP 10, 203 (2020), arXiv:2008.13487 [hep-ph].
  186. J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A. Rodríguez-Sánchez, JHEP 04, 240 (2021), arXiv:2101.09169 [hep-ph].
  187. J. Leutgeb and A. Rebhan, Phys. Rev. D 101, 114015 (2020), arXiv:1912.01596 [hep-ph].
  188. L. Cappiello, O. Catà, G. D'Ambrosio, D. Greynat, and A. Iyer, Phys. Rev. D 102, 016009 (2020), arXiv:1912.02779 [hep-ph].
  189. P. Masjuan, P. Roig, and P. Sánchez-Puertas, J. Phys. G 49, 015002 (2022), arXiv:2005.11761 [hep-ph].
  190. J. Lüdtke and M. Procura, Eur. Phys. J. C 80, 1108 (2020), arXiv:2006.00007 [hep- ph]. Prospects for precise predictions of a µ in the SM
  191. J. Leutgeb and A. Rebhan, Phys. Rev. D 104, 094017 (2021), arXiv:2108.12345 [hep-ph].
  192. M. Hoferichter and P. Stoffer, JHEP 05, 159 (2020), arXiv:2004.06127 [hep-ph].
  193. M. Zanke, M. Hoferichter, and B. Kubis, JHEP 07, 106 (2021), arXiv:2103.09829 [hep-ph].
  194. L. Cappiello, O. Catà, and G. D'Ambrosio, (2021), arXiv:2110.05962 [hep-ph].
  195. P. Achard et al. (L3), JHEP 03, 018 (2007).
  196. P. Achard et al. (L3), Phys. Lett. B 526, 269 (2002), arXiv:hep-ex/0110073.
  197. M. Ablikim et al. (BESIII), Chin. Phys. C 44, 040001 (2020), arXiv:1912.05983 [hep-ex].
  198. M. Hayakawa and S. Uno, Prog. Theor. Phys. 120, 413 (2008), arXiv:0804.2044 [hep-ph].
  199. E.-H. Chao, A. Gérardin, J. R. Green, R. J. Hudspith, and H. B. Meyer, Eur. Phys. J. C 80, 869 (2020), arXiv:2006.16224 [hep-lat].
  200. M. Passera, W. J. Marciano, and A. Sirlin, Phys. Rev. D 78, 013009 (2008), arXiv:0804.1142 [hep-ph].
  201. C. M. Carloni Calame, M. Passera, L. Trentadue, and G. Venanzoni, Phys. Lett. B 746, 325 (2015), arXiv:1504.02228 [hep-ph].
  202. G. Abbiendi et al., Eur. Phys. J. C 77, 139 (2017), arXiv:1609.08987 [hep-ex].
  203. G. Abbiendi et al. (The MUonE Collaboration), Letter of Intent: the MUonE project, Tech. Rep. CERN-SPSC-2019-026. SPSC-I-252 (CERN, Geneva, 2019).
  204. P. Banerjee et al., Eur. Phys. J. C 80, 591 (2020), arXiv:2004.13663 [hep-ph].
  205. G. Ballerini et al., Nucl. Instrum. Meth. A 936, 636 (2019).
  206. G. Abbiendi et al., JINST 15, 01 (2020), arXiv:1905.11677 [physics.ins-det].
  207. G. Abbiendi et al., JINST 16, P06005 (2021), arXiv:2102.11111 [hep-ex].
  208. G. Abbiendi, in 10th International Conference on New Frontiers in Physics (2022) arXiv:2201.13177 [physics.ins-det].
  209. P. Mastrolia, M. Passera, A. Primo, and U. Schubert, JHEP 11, 198 (2017), arXiv:1709.07435 [hep-ph].
  210. S. Di Vita, S. Laporta, P. Mastrolia, A. Primo, and U. Schubert, JHEP 09, 016 (2018), arXiv:1806.08241 [hep-ph].
  211. Prospects for precise predictions of a µ in the SM
  212. M. Fael, JHEP 02, 027 (2019), arXiv:1808.08233 [hep-ph].
  213. M. Alacevich, C. M. Carloni Calame, M. Chiesa, G. Montagna, O. Nicrosini, and F. Piccinini, JHEP 02, 155 (2019), arXiv:1811.06743 [hep-ph].
  214. M. Fael and M. Passera, Phys. Rev. Lett. 122, 192001 (2019), arXiv:1901.03106 [hep-ph].
  215. C. M. Carloni Calame, M. Chiesa, S. M. Hasan, G. Montagna, O. Nicrosini, and F. Piccinini, JHEP 11, 028 (2020), arXiv:2007.01586 [hep-ph].
  216. P. Banerjee, T. Engel, A. Signer, and Y. Ulrich, SciPost Phys. 9, 027 (2020), arXiv:2007.01654 [hep-ph].
  217. R. Bonciani et al., Phys. Rev. Lett. 128, 022002 (2022), arXiv:2106.13179 [hep-ph].
  218. E. Budassi, C. M. Carloni Calame, M. Chiesa, C. L. Del Pio, S. M. Hasan, G. Mon- tagna, O. Nicrosini, and F. Piccinini, JHEP 11, 098 (2021), arXiv:2109.14606 [hep- ph].
  219. A. V. Nesterenko, (2021), arXiv:2112.05009 [hep-ph].
  220. E. Balzani, S. Laporta, and M. Passera, (2021), arXiv:2112.05704 [hep-ph].
  221. M. Fael, F. Lange, K. Schönwald, and M. Steinhauser, (2022), arXiv:2202.05276 [hep-ph].
  222. D. Greynat and E. de Rafael, (2022), arXiv:2202.10810 [hep-ph].
  223. E. Budassi, C. M. C. Calame, C. L. Del Pio, and F. Piccinini, (2022), arXiv:2203.01639 [hep-ph].
  224. R. Alemany, M. Davier, and A. Hocker, Eur. Phys. J. C 2, 123 (1998), arXiv:hep- ph/9703220.
  225. M. Bruno, T. Izubuchi, C. Lehner, and A. Meyer, PoS LATTICE2018, 135 (2018), arXiv:1811.00508 [hep-lat].
  226. "The hadronic vacuum polarization from lattice QCD at high precision," https: //indico.cern.ch/event/956699/ (2020), virtual meeting, November 16-20.
  227. M. S. Albergo, G. Kanwar, S. Racanière, D. J. Rezende, J. M. Urban, D. Boyda, K. Cranmer, D. C. Hackett, and P. E. Shanahan, Phys. Rev. D 104, 114507 (2021), arXiv:2106.05934 [hep-lat].
  228. D. C. Hackett, C.-C. Hsieh, M. S. Albergo, D. Boyda, J.-W. Chen, K.-F. Chen, K. Cran- mer, G. Kanwar, and P. E. Shanahan, (2021), arXiv:2107.00734 [hep-lat].
  229. S. Foreman, T. Izubuchi, L. Jin, X.-Y. Jin, J. C. Osborn, and A. Tomiya, in 38th International Symposium on Lattice Field Theory (2021) arXiv:2112.01586 [cs.LG]. Prospects for precise predictions of a µ in the SM
  230. T. Nguyen, P. Boyle, N. Christ, Y.-C. Jang, and C. Jung, in 38th International Sym- posium on Lattice Field Theory (2021) arXiv:2112.04556 [hep-lat].
  231. D. Boyda et al. (2022) arXiv:2202.05838 [hep-lat].
  232. M. Dalla Brida, L. Giusti, T. Harris, and M. Pepe, Phys. Lett. B 816, 136191 (2021), arXiv:2007.02973 [hep-lat].
  233. W. Detmold, G. Kanwar, H. Lamm, M. L. Wagman, and N. C. Warrington, Phys. Rev. D 103, 094517 (2021), arXiv:2101.12668 [hep-lat].
  234. L. Giusti, M. D. Brida, T. Harris, and M. Pepe, in 38th International Symposium on Lattice Field Theory (2021) arXiv:2112.02647 [hep-lat].