On complements and the factorization problem for Hopf algebras
2010, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1012.2540Abstract
Two new results concerning complements in a semisimple Hopf algebra are proved. They extend some well known results from group theory. The uniqueness of Krull Schmidt Remak type decomposition is proved for semisimple completely reducible Hopf algebras.
References (9)
- S. Burciu, Coset decomposition for semisimple Hopf algebras, Comm. Algebra 10 (2009), 3573-3585.
- S. Burciu, Normal Hopf subalgebras of semisimple Hopf Algebras, Proc. Amer. Mat. Soc 137 (2009), 3969-3979.
- C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, (1995).
- S. Majid, Foundations of quantum groups theory, Cambridge Univer- sity Press, 1995.
- A. Masuoka, Coideal subalgebras in finite Hopf algebras, J. Algebra 163 (1994), 819-931.
- S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82 Amer. Math. Soc, Providence, RI (1993).
- S. Natale, On semisimple Hopf algebras of low dimension, AMA Algebra Montp. Announc. 01 (2003) Paper No. 6.
- D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts, Sringer-Verlag, (1982).
- Inst. of Math. "Simion Stoilow" of the Romanian Academy P.O. Box 1-764, RO-014700, Bucharest, Romania and University of Bucharest, Faculty of Mathematics and Computer Science, 14 Academiei St., Bucharest, Romania E-mail address: sebastian.burciu@imar.ro