Insertion of lattice-valued and hedgehog-valued functions
2006, Topology and its Applications
https://doi.org/10.1016/J.TOPOL.2005.04.008Abstract
Problems of inserting lattice-valued functions are investigated. We provide an analogue of the classical insertion theorem of Lane [Proc. Amer. Math. Soc. 49 (1975) 90-94] for L-valued functions where L is a -separable completely distributive lattice (i.e. L admits a countable join-dense subset which is free of completely join-irreducible elements). As a corollary we get an L-version of the Katětov-Tong insertion theorem due to Liu and Luo [Topology Appl. 45 (1992) 173-188] (our proof is different and much simpler). We show that -separable completely distributive lattices are closed under the formation of countable products. In particular, the Hilbert cube is a -separable completely distributive lattice and some join-dense subset is shown to be both order and topologically isomorphic to the hedgehog J (ω) with appropriately defined topology. This done, we deduce an insertion theorem for J (ω)-valued functions which is independent of that of Blair and Swardson [Indian J. Math. 29 (1987) 229-250]. Also, we provide an iff criterion for inserting a pair of semicontinuous function which yields, among others, a characterization of hereditarily normal spaces.
References (34)
- R. Balbes, Ph. Dwinger, Distributive Lattices, Univ. Misssouri Press, Columbia, 1974.
- R.L. Blair, M.A. Swardson, Insertion and extension of hedgehog-valued functions, Indian J. Math. 29 (1987) 229-250.
- N. Bourbaki, Topologie Générale, Chapitres 1 á 4, Masson, Paris, 1980.
- F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly 78 (1971) 1007-1010.
- G. Choquet, Cours D'Analyse, Tome II: Topologie, Masson, Paris, 1980.
- B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- M. Erné, The ABC of order and topology, in: H. Herrlich, H.-E. Porst (Eds.), Category Theory at Work, Heldermann, Berlin, 1991, pp. 57-83.
- M. Erné, H. Gatzke, Convergence and continuity in partially ordered sets and semilattices, in: R.-E. Hoff- mann, K.H. Hoffmann (Eds.), Continuous Lattices and Their Applications, Proc. Bremen 1982, Marcel Dekker, New York, 1985, pp. 9-40.
- G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Compendium of Continuous Lattices, Springer, Berlin, 1980.
- C. Good, I. Stares, Monotone insertion of continuous functions, Topology Appl. 108 (2000) 91-104.
- F. van Gool, Lower semicontinuous functions with values in a continuous lattice, Comment. Math. Univ. Carolin. 33 (1992) 505-523.
- H. Hahn, Über halbstetige und unstetige Funktionen, Sitzungsberichte Akad. Wiss. Wien IIa (1917) 91-110.
- U. Höhle, Upper semicontinuous fuzzy sets, J. Math. Anal. Appl. 78 (1980) 659-673.
- P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.
- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951) 85-91;
- M. Katětov, Fund. Math. 40 (1953) 203-205, Correction.
- T. Kubiak, On fuzzy topologies, PhD thesis, UAM, Poznań, 1985.
- T. Kubiak, L-fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl. 125 (1987) 141-153.
- T. Kubiak, A strengthening of the Katětov-Tong insertion theorem, Comment. Math. Univ. Carolin. 34 (1993) 357-362.
- T. Kubiak, Separation axioms: extension of mappings and embedding of spaces, in: U. Höhle, S.E. Rod- abaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, in: The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic, Dordrecht, 1999.
- T. Kubiak, M.A. de Prada Vicente, Hereditary normality plus extremal disconnectedness and insertion of a continuous function, Math. Japon. 46 (1997) 403-405.
- S.S. Kutateladze, Foundations of Functional Analysis, Kluwer Texts Math. Sci., vol. 12, Kluwer Academic, Dordrecht, 1996.
- E.P. Lane, A sufficient condition for the insertion of a continuous function, Proc. Amer. Math. Soc. 49 (1975) 90-94.
- E.P. Lane, Insertion of a continuous function, Topology Proc. 4 (1979) 463-478.
- E. Lane, C. Pan, Katětov's lemma and monotonically normal spaces, in: Proc. Tenn. Topology Conf., 1997, pp. 99-109.
- Y.-M. Liu, M.-K. Luo, Lattice-valued Hahn-Dieudonné-Tong insertion theorem and stratification structure, Topology Appl. 45 (1992) 173-188.
- Y.-M. Liu, M.-K. Luo, Q. Peng, Analytic and topological characterizations of completely distributive law, Chinese Sci. Bull. 35 (1990) 1237-1240.
- G.N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953) 518-522.
- D.S. Scott, Continuous lattices, in: Lecture Notes in Math., vol. 274, Springer, Berlin, 1972, pp. 97-136.
- Z. Semadeni, Banach Spaces of Continuous Functions, vol. 1, PWN, Warsaw, 1971.
- M.H. Stone, Boundedness properties in function-lattices, Canad. J. Math. 1 (1949) 176-186.
- H. Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952) 289-292.
- Z. Yang, Dieudonné-Hahn-Tong theorem for complete chains, Houston J. Math. 29 (2003) 949-960.
- D. Zhang, Metrizable completely distributive lattices, Comment. Math. Univ. Carolin. 38 (1997) 137-148.