Academia.eduAcademia.edu

Outline

Contrasting packing modes for tubular assemblies in chlorosomes

2024, Contrasting packing modes for tubular assemblies in chlorosomes

https://doi.org/10.1007/S11120-024-01089-3

Abstract

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the low- est energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ß ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

References (63)

  1. Abraham RJ, Smith KM (1983) NMR spectra of porphyrins. 21. Appli- cations of the ring-current model to porphyrin and chlorophyll aggregation. J Am Chem Soc 105:5734-5741. https:// doi. org/ 10. 1021/ ja003 56a005
  2. Abraham RJ, Smith KM, Goff DA, Lai JJ (1982) NMR spectra of por- phyrins. 18. A ring-current model for chlorophyll derivates. J Am Chem Soc 104:4332-4337. https:// doi. org/ 10. 1021/ ja003 80a004
  3. Adams PG, Cadby AJ, Robinson B, Tsukatani Y, Tank M, Wen J, Blankenship RE, Bryant DA, Hunter CN (2013) Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochim et Biophys Acta -Bioenergetics 1827(10):1235-1244. https:// doi. org/ 10. 1016/j. bbabio. 2013. 07. 004
  4. Aluas M, Tripon C, Griffin JM, Filip X, Ladizhansky V, Griffin RG, Brown SP, Filip C (2009) CHHC and 1 H-1 H magnetization exchange: analysis by experimental solid-state NMR and 11-spin density-matrix simulations. J Magn Reson 199(2):173-187. https:// doi. org/ 10. 1016/j. jmr. 2009. 04. 013
  5. Baias M, Dumez J-N, Svensson PH, Schantz S, Day GM, Emsley L (2013) De novo determination of the crystal structure of a large drug molecule by crystal structure prediction-based powder NMR crystallography. J Am Chem Soc 135(46):17501-17507. https:// doi. org/ 10. 1021/ ja408 8874
  6. Balaban TS, Holzwarth AR, Schaffner K, Boender GJ, de Groot HJM (1995) CP-MAS 13 C-NMR dipolar correlation spectroscopy of 13 C enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochem- istry 34:15259-15266. https:// doi. org/ 10. 1021/ bi000 46a034
  7. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(16):6951-6958. https:// doi. org/ 10. 1063/1. 470372
  8. Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook S, Griffin J, Yates J, Mauri F, Pickard C (2012) First- principles calculation of NMR parameters using the gauge includ- ing projector augmented wave method: a chemist's point of view. Chem Rev 112(11):5733-5779. https:// doi. org/ 10. 1021/ cr300 108a
  9. Borrego CM, Garcia-Gil LJ, Vila X, Cristina XP, Figueras JB, Abella CA (1997) Distribution of bacteriochlorophyll homologs in natu- ral populations of brown-colored phototrophic sulfur bacteria. FEMS MicrobiolEcol 24:301-309. https:// doi. org/ 10. 1111/j. 1574-6941. 1997. tb004 47.x
  10. Chow HC, Serlin R, Strouse CE (1975) Crystal and molecular structure and absolute configuration of ethyl chlorophyllide a-dihydrate. A model for the different spectral forms of chlorophyll a. J Am Chem Soc 97:7230-7237. https:// doi. org/ 10. 1021/ ja008 58a006
  11. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z für Kristallographie-Crystalline Mater 220(5/6):567-570. https:// doi. org/ 10. 1524/ zkri. 220.5. 567. 65075
  12. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100(15):6107-6110. https:// doi. org/ 10. 1021/ jp952 713n
  13. Dostal J, Mancal T, Augulis R, Vacha F, Psencik J, Zigmantas D (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J Am Chem Soc. https:// doi. org/ 10. 1021/ ja302 5627
  14. Ema T, Ouchi N, Doi T, Korenaga T, Sakai T (2005) Highly sensi- tive chiral shift reagent bearing two zinc porphyrins. Org Lett 7(18):3985-3988. https:// doi. org/ 10. 1021/ ol051 4808
  15. Eric V, Castro JL, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC (2023a) Ultrafast anisotropy decay reveals structure and energy transfer in supramolecular aggregates. J Phys Chem B. https:// doi. org/ 10. 1021/ acs. jpcb. 3c047 19
  16. Eric V, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC (2023b) Manifestation of hydrogen bonding and exciton delocalization on the absorption and two-dimensional electronic spectra of chlorosomes. J Phys Chem B 127(5):1097-1109. https:// doi. org/ 10. 1021/ acs. jpcb. 2c071 43
  17. Ewald PP (1921) Die Berechnung optischer und elektrostatischer git- terpotentiale. Ann Phys 369(3):253-287. https:// doi. org/ 10. 1002/ andp. 19213 690304
  18. Fetisova ZG, Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Letters 307(3):371-374. https:// doi. org/ 10. 1016/ 0014-5793(92) 80715-S Fetisova ZG, Mauring K (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Letters 323(1-2):159-162. https:// doi. org/ 10. 1016/ 0014-5793(93) 81470-K Fetisova ZG, Mauring K, Taisova AS (1994) Strongly exciton-coupled BChle chromophore system in the chlorosomal antenna of intact cells of the green bacteriumChlorobium phaeovibrioides: A spec- tral hole burning study. Photosynth Res 41(1):205-210. https:// doi. org/ 10. 1007/ BF021 84161
  19. Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A, Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophysical Journal 71(2):995-1010. https:// doi. org/ 10. 1016/ S0006-3495(96) 79301-3
  20. Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Chew AGM, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concen- tric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106(21):8525-8530. https:// doi. org/ 10. 1073/ pnas. 09035 34106
  21. Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Chew AGM, Buda F, Bryant DA, Holzwarth AR, de Groot HJM (2012) Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. Biochemistry. https:// doi. org/ 10. 1021/ bi201 817x
  22. Giessner-Prettre C, Pullman B (1971) Intermolecular nuclear shielding due to the aromatic amino acids of proteins and to porphyrins. J Theor Biol 31(2):287-294. https:// doi. org/ 10. 1016/ 0022-5193(71) 90188-3 Gomez Maqueo Chew A, Bryant DA (2007) Chlorophyll biosynthe- sis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113-129. https:// doi. org/ 10. 1146/ annur ev. micro. 61. 080706. 093242
  23. Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteri- ochlorophyllide c C-8 2 and C-12 1 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176-6184. https:// doi. org/ 10. 1128/ JB. 00519-07
  24. Günther LM, Jendrny M, Bloemsma EA, Tank M, Oostergetel GT, Bryant DA, Knoester J, Köhler J (2016) Structure of light-har- vesting aggregates in individual chlorosomes. J Phys Chem B 120(24):5367-5376. https:// doi. org/ 10. 1021/ acs. jpcb. 6b037 18
  25. Gunther LM, Lohner A, Reiher C, Kunsel T, Jansen TLC, Tank M, Bryant DA, Knoester J, Kohler J (2018) Structural variations in chlorosomes from wild-type and a bchQR mutant of chlorobacu- lum tepidum revealed by single-molecule spectroscopy. J Phys Chem B 122(26):6712-6723. https:// doi. org/ 10. 1021/ acs. jpcb. 8b028 75
  26. Haken H, Reineker P (1972) The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption. Zeitschrift für Physik 249(3):253-268. https:// doi. org/ 10. 1007/ BF014 00230
  27. Hockney RW, Eastwood JW (1988) Computer Simulation Using Parti- cles, 1st edn. CRC Press. https:// doi. org/ 10. 1201/ 97803 67806 934
  28. Holzwarth AR, Griebenow K, Schaffner K (1990) A photosynthetic antenna system which contains a protein-free chromophore aggregate. ZNaturforsch 45C:203-206. https:// doi. org/ 10. 1515/ znc-1990-3-410
  29. Huster MS, Smith KM (1990) Biosynthetic studies of substitu- ent homologation bacteriochlorophylls c and d. Biochemistry 29:4348-4355. https:// doi. org/ 10. 1021/ bi004 70a013
  30. Huelga SF, Plenio MB (2013) Vibrations, quanta and biology. Con- temp Phys 54(4):181-207. https:// doi. org/ 10. 1080/ 00405 000. 2013. 829687
  31. Katterle M, Prokhorenko VI, Holzwarth AR, Jesorka A (2007) An artificial supramolecular photosynthetic unit. Chem Phys Lett 447(4-6):284-288. https:// doi. org/ 10. 1016/j. cplett. 2007. 09. 030
  32. Li X, Buda F, de Groot HJM, Sevink GJA (2018) Contrasting modes of self-assembly and hydrogen-bonding heterogene- ity in chlorosomes of Chlorobaculum tepidum. J Phys Chem C 122(26):14877-14888. https:// doi. org/ 10. 1021/ acs. jpcc. 8b017 90
  33. Li X, Buda F, de Groot HJM, Sevink GJA (2020) Dynamic disorder drives exciton transfer in tubular chlorosomal assemblies. J Phys Chem B 124(20):4026-4035. https:// doi. org/ 10. 1021/ acs. jpcb. 0c004 41
  34. Li X, Buda F, de Groot HJM, Sevink GJA (2022) The role of chirality and plastic crystallinity in the optical and mechanical properties of chlorosomes. iScience 25(1):103618. https:// doi. org/ 10. 1016/j. isci. 2021. 103618
  35. Luo S-C, Khin Y, Huang S-J, Yang Y, Hou T-y, Cheng Y-C, Chen HM, Chin Y-Y, Chen C-T, Lin H-J, Tang JK-H, Chan JCC (2014) Prob- ing the spatial organization of bacteriochlorophyll c by solid-state nuclear magnetic resonance. Biochemistry 53(34):5515-5525. https:// doi. org/ 10. 1021/ bi500 755r
  36. Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897-8909. https:// doi. org/ 10. 1021/ j1003 89a010
  37. Molina RA, Benito-Matías E, Somoza AD, Chen L, Zhao Y (2016) Superradiance at the localization-delocalization crossover in tubu- lar chlorosomes. Phys Rev E 93(2): 022414. https:// doi. org/ 10. 1103/ PhysR evE. 93. 022414
  38. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approxi- mation made simple. Phys Rev Lett 77(18):3865-3868. https:// doi. org/ 10. 1103/ PhysR evLett. 77. 3865
  39. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105-2120. https:// doi. org/ 10. 1016/ S0006-3495(00) 76458-7
  40. Psencik J, Vacha M, Adamec F, Ambroz M, Dian J, Bocek J, Hala J (1994) Hole burning study of excited state structure and energy transfer dynamics of bacteriochlorophyll c in chlorosomes of green sulphur photosynthetic bacteria. Photosynth Res 42(1):1-8. https:// doi. org/ 10. 1007/ BF000 19052
  41. Purchase RL, de Groot HJM (2015) Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coher- ent kinetic control for high yield. Interface Focus 5(3):20150014. https:// doi. org/ 10. 1098/ rsfs. 2015. 0014
  42. Sawaya NPD, Huh J, Fujita T, Saikin SK, Aspuru-Guzik A (2015) Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. Nano Lett 15(3):1722-1729. https:// doi. org/ 10. 1021/ nl504 399d
  43. Tian Y, Camacho R, Thomsson D, Reus M, Holzwarth AR, Scheblykin IG (2011) Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimen- sional polarization fluorescence microscopy. J Am Chem Soc 133(43):17192-17199. https:// doi. org/ 10. 1021/ ja201 9959
  44. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field
  45. -D and 3-D MAS NMR dipolar correlation spectroscopy. Bio- chemistry 40(6):1587-1595. https:// doi. org/ 10. 1021/ bi001 7529
  46. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
  47. Adams PG, Cadby AJ, Robinson B, Tsukatani Y, Tank M, Wen J, Blankenship RE, Bryant DA, Hunter CN (2013) Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochimica et Biophysica Acta -Bioenergetics 1827 (10):1235-1244. doi:https://doi.org/10.1016/j.bbabio.2013.07.004
  48. Balaban TS, Holzwarth AR, Schaffner K, Boender GJ, de Groot HJM (1995) CP-MAS 13 C-NMR dipolar correlation spectroscopy of 13 C enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: The self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34:15259-15266
  49. Chow HC, Serlin R, Strouse CE (1975) Crystal and molecular structure and absolute configuration of ethyl chlorophyllide a-dihydrate. A model for the different spectral forms of chlorophyll a Journal of the American Chemical Society 97:7230-7237. doi:https://doi.org/10.1021/ja00858a006
  50. Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Chew AGM, Buda F, Bryant DA, Holzwarth AR, de Groot HJM (2012) Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. Biochemistry 51 (22):4488-4498. doi:https://doi.org/10.1021/bi201817x
  51. Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009a) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. ProcNatl AcadSci 106 (21):8525-8530. doi:https://doi.org/10.1073/pnas.0903534106
  52. Ganapathy S, Sengupta S, Wawrzyniak PK, Huber V, Buda F, Baumeister U, Würthner F, de Groot HJM (2009b) Zinc chlorins for artificial light-harvesting self assemble into antiparallel stacks forming a microcrystalline solid-state material. ProcNatl AcadSci 106:11472-11477. doi:https://doi.org/10.1073/pnas.0811872106
  53. Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-8 2 and C-12 1 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. The Journal of Bacteriology 189:6176-6184. doi:https://doi.org/10.1128/JB.00519-07
  54. Jaroniec CP Dipole distance calculator. https://chemistry.osu.edu/~jaroniec/nmr/calcdist.php.
  55. Li X, Buda F, de Groot HJM, Sevink GJA (2018) Contrasting modes of self-assembly and hydrogen-bonding heterogeneity in chlorosomes of Chlorobaculum tepidum. The Journal of Physical Chemistry C 122 (26):14877-14888. doi:https://doi.org/10.1021/acs.jpcc.8b01790
  56. Mehring M (1983) M. Mehring. Principles of High Resolution NMR in Solids. Springer-Verlag, Berlin, Heidelberg, New York, 1983. 342 pp. Cloth $71.80. ISBN 3- 540-11852-7, vol 21. Organic Magnetic Resonance, vol 12. doi:https://doi.org/10.1002/omr.1270211211
  57. Oostergetel GT, Reus M, Gomez Maqueo Chew A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Letters 581 (28):5435-5439
  58. Tian Y, Camacho R, Thomsson D, Reus M, Holzwarth AR, Scheblykin IG (2011) Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. Journal Of The American Chemical Society 133 (43):17192-17199. doi:10.1021/ja2019959
  59. van Rossum BJ, de Groot CP, Ladizhansky V, Vega S, H.J.M. dG (2000) A method for measuring heteronuclear ( 1 H-13 C) distances in high speed MAS NMR. Journal of the American Chemical Society 122 (14):3465-3472. doi:https://doi.org/10.1021/ja992714j
  60. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40 (6):1587-1595. doi:10.1021/bi0017529
  61. Author Contributions
  62. Yuliya A. Miloslavina: writing, figures, tables, references, MAS NMR measurements and data analysis in Leiden and in Göttingen, construction and analysis of repeat units and packing modes in the Materials Studio, theoretical calculations and analysis, EM data modeling, construction of the tubes in Crystal Maker. Brijith Thomas: support with Castep calculations Michael Reus: sample preparation Karthick Babu Sai Sankar Gupta: MAS NMR measurements setup help in Leiden Gert T. Oostergetel: provided original EM spectra and explain how to do EM modeling. Loren Andreas: supervised MAS NMR measurements in Göttingen, writing-editing
  63. Alfred R. Holzwarth: discussions about optical spectroscopy, modeling was first started by modifications of Alfred's model Huub J.M. de Groot: coordination of the project, writing, editing