Gradient Induced Droplet Motion Over Soft Solids
2019, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1908.09413Abstract
Fluid droplets can be induced to move over rigid or flexible surfaces under external or body forces. We describe the effect of variations in material properties of a flexible substrate as a mechanism for motion. In this paper, we consider a droplet placed on a substrate with either a stiffness or surface energy gradient, and consider its potential for motion via coupling to elastic deformations of the substrate. In order to clarify the role of contact angles and to obtain a tractable model, we consider a two-dimensional droplet. The gradients in substrate material properties give rise to asymmetric solid deformation and to unequal contact angles, thereby producing a force on the droplet. We then use a dynamic viscoelastic model to predict the resulting dynamics of droplets. Numerical results quantifying the effect of the gradients establish that it is more feasible to induce droplet motion with a gradient in surface energy. The results show that the magnitude of elastic modulus gradient needed to induce droplet motion exceeds experimentally feasible limits in the production of soft solids and is therefore unlikely as a passive mechanism for cell motion. In both cases, of surface energy or elastic modulus, the threshold to initiate motion is achieved at lower mean values of the material properties.
References (48)
- AHMED, G., MATHIEU, S., JERMY, M., TAYLOR, M. (2014) Modeling the Effects of Contact Angle Hysteresis on the Sliding of Droplets Down Inclined Surfaces. European Journal of Mechanics B/Fluids, 48, 218-230.
- ANDREOTTI, B., B ÄUMCHEN, O., BOULOGNE, F., DANIELS, K. E., DUFRESNE, E. R., PERRIN, H., SALEZ, T., SNOEIJER, J. H., STYLE, R. W. (2016) Soft Capillarity: When and How Does Surface Tension Deform Soft Solids? Soft Matter, 12 2993-2996.
- ANDREOTTI, B., SNOEIJER, J. H. (2016) Soft Wetting and the Shuttleworth Effect, at the Crossroads Between Thermodynamics and Mechanics. Europhysics Letters, 113, 66001.
- BARDALL, A., DANIELS, K. E., SHEARER, M. (2018) Deformation of an Elastic Substrate Due to a Resting Sessile Droplet. European Journal of Applied Mathematics, 29 (2), 281-300.
- BICO, J., REYSSAT, É., ROMAN, B. (2018) Elastocapillarity: When Surface Tension Deforms Elastic Solids, Annual Reviews, 50, 629-659.
- BOSTWICK, J. B., SHEARER, M., DANIELS, K. E. (2014) Elastocapillary Deformations on Partially-Wetting Substrates: Rival Contact-Line Models. Soft Matter, 10, 7361-7369.
- BUENO, J., BAZILEVS, Y., JUANES, R., GOMEZ, H. (2017) Droplet Motion Driven by tensotaxis. Extreme Mechanics Letters, 13, 10-16.
- BUENO, J., BAZILEVS, Y., JUANES, R., GOMEZ, H. (2018) Wettability Control of Droplet Durotaxis. Soft Matter, 14, 1417-1426.
- CHAUDHURY, M. K., WHITESIDES, G. M. (1992) How to Make Water Run Uphill. Science, 256, 1539-1541.
- CROWE-WILLOUGHBY, J. A., WEIGER, K. L., ÖZCAM, A. E., GENZER, J. (2010) Formation of Silicone Elastomer Networks Films with Gradients in Modulus. Polymer, 51 (3), 763-773.
- DERVAUX, J., LIMAT, L. (2015) Contact Lines on Soft Solids with Uniform Surface Tension: Analytical Solutions and Double Transition for Increasing Deformability. Proceedings of the Royal Society A, 471, 2176.
- DHIR, V., GAO, D., MORLEY, N. B. (2004) Understanding Magnetic Field Gradient Effect from a Liquid Metal Droplet Move- ment. Journal of Fluids Engineering, 126, 120-124.
- HERDE, D. (2013) Contact Line Dynamics on Heterogeneous Substrates. (Doctoral dissertation), Georg-August University School of Science.
- HOURLIER-FARGETTE, A., ANTHOWIAK, A., CHATEAUMINOIS, A., NEUKIRCH, S. (2017) Role of Uncrosslinked Chains in Droplets Dynamics on Silicone Elastomers. Soft Matter, 13, 3484-3491.
- HOURLIER-FARGETTE, A., DERVAUX, J., ANTKOWIAK, A., NEUKIRCH, S. (2018) Extraction of Silicone Uncrosslinked Chains at Air-Water-Poydimethylsiloxane Triple Lines. Langmuir, 34 (41), 12244-12250.
- HUI, C. Y., JAGOTA, A. (2014) Deformation Near a Liquid Contact Line on an Elastic Substrate. Proceedings of the Royal Society A, 470, 20140085.
- JERISON, E. R., XU, Y., WILEN, L. A., DUFRESNE, E. R. (2011) Deformation of an Elastic Substrate by a Three-Phase Contact Line. Physical Review Letters, 106, 186103.
- KARPITSCHKA, S., DAS, S., VAN GORCUM, M., PERRIN, H., ANDREOTTI, B., SNOEIJER, J. H. (2015) Droplets Move Over Viscoelastic Substrates by Surfing a Ridge. Nature Communications, 6, 7891.
- KOURSARI, N., AHMED, G., STAROV, V. M. (2018) Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions. Langmuir, 34 (19), 5672-5677.
- KIDOAKI, S., MATSUDA, T. (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. Journal of Biotechnol- ogy, 133 (2), 225-230.
- LIMAT, L. (2012) Straight Contact Lines on a Soft, Incompressible Solid. European Phys. Journal E., 35, 1-13.
- LONG, D., AJDARI, A., LEIBLER, L. (1996) Static and Dynamic Wetting Properties of Thin Rubber Films. Langmuir, 12 (21), 5221-5230.
- LUBBERS, L., A., WEIJS, J. H., BOTTO, L., DAS, S. (2014) Drops on Soft Solids: Free Energy and Double Transition of Contact Angles. Journal of Fluid Mechanics, 747
- MORIYAMA, K., KIDOAKI, S. (2019) Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis. Langmuir, 35 (23), 7478-7486.
- ONUKI, A., KANATANI, K. (2005) Droplet Motion with Phase Change in a Temperature Gradient. Physical Review E, 72, 27844.
- PALCHESKO, R. N., ZHANG, L., SUN, Y., FEINBER, A. W. (2012) Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve. PLoS ONE, 7 (12), e51499.
- PARK, S. J., WEON, B. M., LEE, J. S., KIM, J., JE, J. H. (2014) Visualization of Asymmetric Wetting Ridges on Soft Solids with X-ray Microscopy. Nature Communications, 5, 4369.
- PARK, S. J., BOSTWICK, J. B., DE ANDRADE, V., JE, J. H. (2017) Self-spreading of the Wetting Ridge During Stick-slip on a Viscoelastic Surface. Soft Matter, 13, 8331-8336.
- SCHULMAN, R. D., TREJO, M., SALEZ, T., RAPHA ËL, E., DALNOKI-VERESS, K. (2018) Surface Energy of Strained Amorphous Solids. Nature Communications, 9, 982.
- SHANAHAN, M. E. R., CARR É, A. (1995) Viscoelastic Dissipation in Wetting and Adhesion Phenomena. Langmuir, 11 (4), 1396- 1402.
- SNOEIJER, J. H., ANDREOTTI, B. (2013) Moving Contact Lines: Scales, Regimes, and Dynamical Transitions. Annual Reviews, 45, 269-292.
- SNOEIJER, J. H., ROLLEY, E., ANDREOTTI, B. (2018) Paradox of Contact Angle Selection on Stretched Soft Solids. Physical Review Letters, 121, 068003.
- SOUTAS-LITTLE, R. W. (1999) Elasticity. Dover Publications.
- STRICHER, A., RINALDI, R. G., MACHADO, G., CHAGNON, G., FAVIER, D., CHAZEAU, L., GANACHAUD, F. (2016) Light- induced Bulk Architecturation of PDMS Membranes. Macromolecula Materials and Engineering, 301 (10), 1151-1157.
- STYLE, R. W., DUFRESNE, E. R. (2012) Static Wetting on Deformable Substrates, From Liquids to Soft Solids. Soft Matter, 8, 7177-7184.
- STYLE, R. W., BOLTYANSKIY, R., CHE, Y., WETTLAUFER, J. S., WILEN, L. A., DUFRESNE, E. R. (2013a) Universal Defor- mation of Soft Substrates Near a Contact Line and the Direct Measurement of Solid Surface Stresses. Physical Review Letters, 110, 066103.
- STYLE, R. W., CHE, Y., PARK, S. J., WEON, B. M., JE, J. H., HYLAND, C., GERMAN, G. K., POWER, M. P., WILEN, L. A., WETTLAUFER, J. S., DUFRESNE, E. R. (2013b) Patterning Droplets with Durotaxis. Proceedings of the National Academy of Sciences, 110 (31), 12541-12544.
- STYLE, R. W., HYLAND, C., BOLTYANSKIY, R., WETTLAUFER, J. S., DUFRESNE, E. R. (2013c) Surface Tension and Contact with Soft Elastic Solids. Nature Communications, 4, 2728.
- STYLE, R. W., JAGOTA, A., HUI, C., DUFRESNE, E.R. (2017) Elastocapillarity: Surface Tension and the Mechanics of Soft Solids. Annual Reviews, 8, 99-118.
- STYLE, R. W., XU, Q. (2018) The Mechanical Equilibrium of Soft Solids with Surface Elasticity. Soft Matter, 14, 4569-4576.
- SUN, Q., WANG, D., LI, Y., ZHANG, J., YE, S., CUI, J., CHEN, L., WANG, Z., BUTT, H.-J., VOLLMER, D., XU , X. (2019) Surface charge printing for programmed droplet transport. Nature Materials, DOI: 10.1038.s41563-019-0440-2.
- THEODORAKIS, P.E., EGOROV, S. A., MILCHEV, A. (2017) Stiffness-guided Motion of a Droplet on a Solid Substrate. Journal of Chemical Physics, 146, 244705.
- TSCHOEGL, N. W. (2002) The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Berlin, Heidelberg.
- VAN GORCUM, M., KARPITSCHKA, S., ANDREOTTI, B., AND SNOEIJER, J. H. (2019) Spreading on viscoelastic solids: Are contact angles selected by Neumann's law? arXiv: 1907.08067v1.
- VOU É, M., RIOBOO, R., BAUTHIER, C., CONTI, J., CARLOT, M., DE CONINCK, J. (2003) Dissipation and Moving Contact Lines on Non-rigid Substrates. Journal of the European Ceramic Society, 23 (15), 2769-2775.
- WONG, J. Y., VELASCO, A., RAJAGOPALAN, P., PHAM, Q. (2003) Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels. Langmuir, 19 (5), 1908-1913.
- XU, Q., STYLE, R. W., DUFRESNE, E. R. (2018) Surface Elastic Constants of a Soft Solid. Soft Matter, 14, 916-920.
- ZHAO, M., DERVAUX, J., NARITA, T., LEQUEUX, F., LIMAT, L., ROCH É, M. (2018) Geometrical Control of Dissipation During the Spreading of Liquids on Soft Solids. Proceedings of the National Academy of Sciences, 115 (8), 1748-1753.