Academia.eduAcademia.edu

Outline

SVM Candidates and Sparse Representation for Bird Identification

2014, CLEF (Working Notes)

Abstract

We present a description of our approach for the "Bird task Identification LifeCLEF 2014". Our approach consists of four stages: (1) a filtering stage for the filtering of audio bird recordings; (2) segmentation stage for the extraction of syllables; (3) a candidate generation based on HOG features from the syllables using SVM; and (4) a species identification using a Sparse Representation-based Classification of HOG and LBP features. Our approach ranked seventh team-wise in the challenge and showed a poor performance in the fourth stage.

References (6)

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conference on Computer Vision and Pattern Recognition, San Diego, USA (Junio 2005)
  2. Goëau, H., Glotin, H., Vellinga, W.P., Rauber, A.: Lifeclef bird identification task 2014. In: CLEF working notes 2014 (2014)
  3. Joly, A., Müller, H., Goëau, H., Glotin, H., Spampinato, C., Rauber, A., Bonnet, P., Vellinga, W.P., Fisher, B.: Lifeclef 2014: multimedia life species identification challenges. In: Proceedings of CLEF 2014 (2014)
  4. Wang, L., He, D.: Texture classification using texture spectrum. Pattern Recognition (8), 905 -910 (1990)
  5. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 31(2), 210-227 (2009)
  6. Yang, A., Zhou, Z., Balasubramanian, A., Sastry, S., Ma, Y.: Fast 1 -minimization algorithms for robust face recognition. Image Processing, IEEE Transactions on 22(8), 3234-3246 (Aug 2013)