Academia.eduAcademia.edu

Outline

Single facility siting involving allocation decisions

2020, European Journal of Operational Research

https://doi.org/10.1016/J.EJOR.2020.01.047

Abstract

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References (63)

  1. Berman, O., Drezner, Z., & Wesolowsky, G. O. (2007). The transfer point location problem. European Journal of Operational Research, 179(3), 978-989.
  2. Bischoff, M., & Klamroth, K. (2007). An efficient solution method for Weber problems with barriers based on genetic algorithms. European Journal of Operational Research, 177(1), 22-41.
  3. Bjelland, B. D., Montello, D. R., Fellmann, J. D., Getis, A., & Getis, J. (2014). Human Geography: Landscape of Human Activities, 12 th edition. New York: McGraw Hill.
  4. Bozarth, C. B., & Handfield, R. B. (2019). Introduction to Operations and Supply Chain Management, 5th edition. Pearson.
  5. Brimberg, J., Drezner, Z., Mladenović, N., & Salhi, S. (2014). A new local search for continuous location problems. European Journal of Operational Research, 232(2), 256-265.
  6. Canbolat, M. S., & Wesolowsky, G. O. (2010). The rectilinear distance Weber problem in the presence of a probabilistic line barrier. European Journal of Operational Research, 202(1), 114-121.
  7. Canbolat, M. S., & Wesolowsky, G. O. (2012). On the use of the Varignon frame for single facility Weber problems in the presence of convex barriers. European Journal of Operational Research, 217(2), 241-247.
  8. Capello, R. (2014). Classical contributions: Von Thunen, Weber, Christaller, Losch. In, Handbook of Regional Science, edited by M.M. Fischer and P. Nijkamp, 507-526. Berlin: Springer- Verlag.
  9. Carrizosa, E., Muñoz-Márquez, M., & Puerto, J. (1998). The Weber problem with regional demand. European Journal of Operational Research, 104(2), 358-365.
  10. Christaller, W. (1933). Die zentralen Orte in Süddeutschland: eine ökonomisch-geographische Untersuchung über die Gesetzmässigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen.
  11. Church, R. L. (2019). Understanding the Weber location paradigm. In, Festschrift for Zvi Drezner, edited by H.A. Eiselt and V. Marianov, 69-88. New York: Springer.
  12. Church, R. L., & Murray, A. T. (2009). Business site selection, location analysis, and GIS. Hoboken, NJ: John Wiley & Sons.
  13. Cooper, L. (1963). Location-allocation problems. Operations Research, 11(3), 331-343.
  14. Drezner, T., Drezner, Z., & Schobel, A. (2018). The Weber obnoxious facility location model: a big arc small arc approach. Computers & Operations Research, 98, 240-250.
  15. Drezner, Z., & Guyse, J. (1999). Application of decision analysis techniques to the Weber facility location problem. European Journal of Operational Research, 116(1), 69-79.
  16. de Berg, M., Cheong, O., Van Kreveld, M. & Overmars, M. (2008). Computational Geometry: Algorithms and Applications, 3rd edition. Berlin: Springer.
  17. Feng, X., & Murray, A. T. (2018). Allocation using a heterogeneous space Voronoi diagram. Journal of Geographical Systems, 20(3), 207-226.
  18. Francis, R. L., McGinnis, L. F. & White, J. A. (1992). Facility layout and location: an analytical approach, second edition. Englewood Cliffs, NJ: Prentice-Hall.
  19. Gorner, S., & Kanzow, C. (2016). On Newton's Method for the Fermat-Weber Location Problem. Journal of Optimization Theory and Applications, 170(1), 107-118.
  20. Haines, V. G. (1970). Business relocation: a guide to moving a business. Random House Business.
  21. Hoover, E. M. (1937). Location theory and the shoe and leather industries. Cambridge: Harvard University Press.
  22. Hotelling, H. (1990). Stability in competition. In, The Collected Economics Articles of Harold Hotelling, pp. 50-63. New York: Springer.
  23. Irawan, C. A., Salhi, S., Luis, M., & Azizi, N. (2017). The continuous single source location problem with capacity and zone-dependent fixed cost: Models and solution approaches. European Journal of Operational Research, 263(1), 94-107.
  24. Isard, W. (1956). Location and space-economy. New York: Wiley.
  25. Isard, W. (1960). Methods of Regional Analysis: an Introduction to Regional Science. Cambridge: MIT.
  26. Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2019). Global supply chain and operations management. A Decision-Oriented Introduction to the Creation of Value, 2nd edition. Springer.
  27. Kelly, L. M. (1969). Optimal distance configurations. In Recent Progress in Combinatorics. Academic Press New York.
  28. Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European Journal of Operational Research, 162(1), 4-29.
  29. Kuhn, H. W., & Kuenne, R. E. (1962). An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. Journal of Regional Science, 4(2), 21-33.
  30. Launhardt, W. (1872). Kommercielle Tracirung der Verkehrswege. Architekten-und Ingenieurverein.
  31. Love, R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location: models and methods. North-Holland, NY, NY.
  32. Lösch, A. (1940). The Economics of Location, 1954. New Haven: Yale University Press.
  33. Miehle, W. (1958). Link-length minimization in networks. Operations Research, 6(2), 232-243.
  34. Murray, A. T. (2010). Advances in location modeling: GIS linkages and contributions. Journal of Geographical Systems, 12(3), 335-354.
  35. Murray, A. T. (2018). Complexities in spatial center derivation. Transactions in GIS, 22(6), 1335- 1350.
  36. Murray, A. T., Matisziw, T. C., Wei, H., & Tong, D. (2008). A geocomputational heuristic for coverage maximization in service facility siting. Transactions in GIS, 12(6), 757-773.
  37. Okabe, A., Boots, B., Sugihara, K. & Chiu, S.N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, second edition. New York: Wiley.
  38. Ostresh Jr, L. M. (1978). On the convergence of a class of iterative methods for solving the Weber location problem. Operations Research, 26(4), 597-609.
  39. Perreur, J. (1998). Industrial location theory in German thought-Launhardt and Weber. Recherches Économiques de Louvain/Louvain Economic Review, 64(1), 75-96.
  40. Pinto, J. V. (1977). Launhardt and location theory: Rediscovery of a neglected book. Journal of Regional Science, 17(1), 17-29.
  41. Plastria, F. (2016a). How bad can the centroid be?. European Journal of Operational Research, 252(1), 98-102.
  42. Plastria, F. (2016b). Up-and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams. Annals of Operations Research, 246(1-2), 227-251.
  43. Reid, R. D., & Sanders, N. R. (2016). Operations Management: an integrated approach, 6 th edition. New York: Wiley.
  44. San Joaquin County Agricultural Commissioner (2017). https://www.sjgov.org/department/agcomm/gis_crop_data (accessed 3/4/19).
  45. Schöbel, A., & Scholz, D. (2014). A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables. European Journal of Operational Research, 232(2), 266-275.
  46. Schultz, G. P. (1969). Facility planning for a public service system: Domestic solid waste collection. Journal of Regional Science, 9(2), 291-307
  47. Simpson, T. (1750). The doctrine and application of Fluxions, Printed by J. Nourse, London.
  48. Stevenson, W. J. (2018). Operations Management, 13th edition. New York: McGraw Hill.
  49. Vardi, Y., & Zhang, C. H. (2001). A modified Weiszfeld algorithm for the Fermat-Weber location problem. Mathematical Programming, 90(3), 559-566.
  50. Varignon, P. (1687). Projet d'une nouvelle mechanique. Chez C. Jombert, Paris.
  51. Venkateshan, P., Ballou, R. H., Mathur, K., & Maruthasalam, A. P. (2017). A Two-echelon joint continuous-discrete location model. European Journal of Operational Research, 262(3), 1028-1039.
  52. Vergin, R. C., & Rogers, J. D. (1967). An algorithm and computational procedure for locating economic facilities. Management Science, 13(6), B-240-B-254.
  53. von Thunen, J. V. (1826). Der isolierte Staat. Beziehung auf Landwirtschaft und Nationalökonomie.
  54. Weber, A. (1909). Uber den Standort der Industrien (Theory of the location of industries) (translated with an introduction and notes by C.J. Friedrich, 1929). University of Chicago Press, Chicago.
  55. Wei, H., Murray, A. T., & Xiao, N. (2006). Solving the continuous space p-centre problem: planning application issues. IMA Journal of Management Mathematics, 17(4), 413-425.
  56. Wei, R., & Murray, A. T. (2014). Evaluating polygon overlay to support spatial optimization coverage modeling. Geographical Analysis, 46(3), 209-229.
  57. Weiszfeld, E. (1937). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, First Series, 43, 355-386.
  58. Weiszfeld, E., & Plastria, F. (2009). On the point for which the sum of the distances to n given points is minimum. Annals of Operations Research, 167(1), 7-41.
  59. Wersan, S. J., Quon, J. E., & Charnes, A. (1962). Systems analysis of refuse collection and disposable practices. American Public Works Association. Year-Book, 195-211.
  60. Wesolowsky, G. O. (1993). The Weber problem: history and perspectives. Location Science, 1(1): 5-24.
  61. Wesolowsky, G. O., & Love, R. F. (1972). A nonlinear approximation method for solving a generalized rectangular distance Weber problem. Management Science, 18(11), 656-663.
  62. Yao, J., & Murray, A. T. (2013). Continuous surface representation and approximation: spatial analytical implications. International Journal of Geographical Information Science, 27(5), 883-897.
  63. Yao, J., & Murray, A. T. (2014). Serving regional demand in facility location. Papers in Regional Science, 93(3), 643-662.