Academia.eduAcademia.edu

Outline

Pyritization: a palaeoenvironmental and redox proxy reevaluated

2003, Estuarine, Coastal and Shelf Science

https://doi.org/10.1016/S0272-7714(03)00058-1

Abstract

Pyrite as a proxy for the redox states of bottom waters was evaluated in the context of modern salt marsh sediments. Two sites, 40 m apart, with very different physicochemical properties were sampled seasonally. The sites differed from each other in (1) the amount of tidal flushing, (2) vegetation, (3) redox condition below the sediment-water interface, (4) carbon content and (5) solid phase iron oxyhydroxide and iron sulfide content of the sediment. The calculated degree of pyritization (DOP) varies between 0.44 and 1.0, depending on the site and the season. Different DOP values were obtained for the same samples when different techniques were applied for extraction of reactive iron. Framboidal pyrite was dominant; however, other textural forms of pyrite were also observed. The size distribution of the individual pyrite crystals and the framboids was fairly narrow; with the majority of them having diameters <10 lm. Despite deposition taking place in aerobic waters (fully oxygenated waters) at the sampled sites, both the DOP and pyrite textures indicated dysoxic (waters with low oxygen concentrations) to euxinic (waters with no oxygen present, and H 2 S may be continually or intermittently present) bottom waters. These results indicate that caution must be applied when using DOP and pyrite morphologies as proxies for interpreting the redox conditions of different depositional environments.

References (48)

  1. Barnes, S. S., Craft, T. F., & Windom, H. L. (1973). Iron-scandium budget in sediments of two Georgia salt marshes. Bulletin Georgia Academy of Science 31, 23-30.
  2. Basan, P. B., & Frey, R. W. (1977). Actual-palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia. In T. P. Crimes, & J. C. Harper (Eds.), Trace fossils 2 (pp. 41-70). Steel House Press.
  3. Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science 268, 1-23.
  4. Berner, R. A. (1982). Burial of organic carbon and pyrite sulfur in modern ocean: its geochemical and environmental significance. American Journal of Science 282, 451-473.
  5. Berner, R. A. (1984). Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605-615.
  6. Berner, R. A. (1989). Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeo- geography, Palaeoclimatology, Palaeoecology 75, 97-122.
  7. Berner, R. A., & Landis, G. P. (1988). Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air. Science 239, 1406-1409.
  8. Boesen, C., & Postma, D. (1988). Pyrite formation in anoxic environ- ments of the Baltic. American Journal of Science 288, 575-603.
  9. Buick, R. (1992). The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74-77.
  10. Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica et Cosmochimica Acta 53, 619-632.
  11. Canfield, D. E., Raiswell, R., & Bottrell, S. H. (1992). The reactivity of sedimentary iron minerals towards sulfide. American Journal of Science 292, 659-683.
  12. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., & Berner, R. A. (1986). The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 54, 149-155.
  13. Cline, J. D. (1969). Spectrophotometric determination of hydro- gen sulfide in natural waters. Limnology and Oceanography 14, 454-458.
  14. Cutter, G. A., & Velinsky, D. J. (1988). Temporal variations of sedi- mentary sulfur in a Delaware salt marsh. Marine Chemistry 23, 311-327.
  15. Dacey, J. W. H., & Howes, B. L. (1984). Water uptake by roots controls water table movement and sediment oxidation in short Spartina alterniflora marsh. Science 224, 487-490.
  16. Dean, W. E., & Arthur, M. A. (1989). Iron-sulfur-carbon relation- ships in organic carbon rich sequences. I. Cretaceous western interior seaway. American Journal of Science 289, 708-743.
  17. Fossing, H., & Jørgensen, B. B. (1989). Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8(3), 205-222.
  18. Grandstaff, D. E. (1980). Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: implications for oxygen in the Precambrian atmosphere. Precambrian Research 13, 1-26.
  19. Henderson, G. M. (2002). New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203, 1-13.
  20. Hesslein, R. G. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography 21, 912-914.
  21. Howarth, R. W., & Giblin, A. E. (1983). Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnology and Oceanography 28(1), 70-82.
  22. Howes, B. L., Dacey, J. W. H., & Goehringer, D. D. (1986). Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity. Journal of Ecology 74, 881-898.
  23. Jørgensen, B. B. (1978). A comparison of methods for the quantifi- cation of bacterial sulfate reduction in coastal marine sediments. 1. Measurement with radiotracer techniques. Geomicrobiology Jour- nal 1, 11-28.
  24. Kostka, J. E., & Luther, G. W. (1994). Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochi- mica Acta 58(7), 1701-1710.
  25. Kostka, J., & Luther, G. W., III (1995). Seasonal cycling of Fe in salt- marsh sediments. Biogeochemistry 29, 159-181.
  26. Kostka, J. E., Roychoudhury, A. N., & Van Cappellen, P. (2002). Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60(1), 49-76.
  27. Leventhal, J., & Taylor, C. (1990). Comparison of methods to deter- mine degree of pyritisation. Geochimica et Cosmochimica Acta 54, 2621-2625.
  28. Luther, G. W., III., Giblin, A. E., Howarth, R. W., & Ryans, R. A. (1982). Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta 46, 2671-2676.
  29. Lyons, T. W., & Berner, R. A. (1992). Carbon-sulfur-iron systematics of the uppermost Holocene sediments of the anoxic Black Sea. Chemical Geology 99, 1-27.
  30. Meile, C., Koretsky, C. M., & Van Cappellen, P. (2001). Quantifying bioirrigation in aquatic sediments: an inverse modeling approach. Limnology and Oceanography 46(1), 164-177.
  31. Morse, J. W., & Wang, Q. (1997). Pyrite formation under conditions approximating those in anoxic sediments. Marine Chemistry 57 (3-4), 187-193.
  32. Raiswell, R., & Berner, R. A. (1985). Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285, 710-724.
  33. Raiswell, R., Buckley, F., Berner, R. A., & Anderson, T. F. (1988). Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Petrology 58(5), 812-819.
  34. Raiswell, R., & Canfield, D. E. (1998). Sources of iron for pyrite formation in marine sediments. American Journal of Science 298(3), 219-245.
  35. Raiswell, R., Canfield, D. E., & Berner, R. A. (1994). A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology 111(1-4), 101-110.
  36. Roychoudhury, A. N. (1999). Biogeochemical dynamics in aquatic sediments; novel laboratory and field-based approaches. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
  37. Runnegar, B. (1991). Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Palaeogeography, Palaeoclimatology, Palaeoecology 97, 97-111.
  38. Schidlowski, M., Appel, P. W. U., Eichmann, R., & Junge, C. E. (1979). Carbon isotope geochemistry of the 3.7 Â 10 9 -yr-old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles. Geochimica et Cosmochimica Acta 43, 189-199.
  39. Schidlowski, M., Junge, C. E., & Pietrek, H. (1977). Sulfur isotope variations in marine sulfate evaporites and the Phanerozoic oxygen budget. Journal of Geophysical Research 82(18), 2557-2565.
  40. Suits, N. S., & Wilkin, R. T. (1998). Pyrite formation in the water column and sediments of a meromictic lake. Geology (Boulder) 26(12), 1099-1102.
  41. Tabatabai, M. A. (1974). A rapid method for determination of sulfate in water samples. Environmental Letters 7(3), 237-242.
  42. Wignall, P. B., & Newton, R. (1998). Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science 298, 537-552.
  43. Wilkin, R. T., & Arthur, M. A. (2001). Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for late Pleistocene to Holocene excursions of the O 2 -H 2 S redox transition. Geochimica et Cosmochimica Acta 65(9), 1399-1416.
  44. Wilkin, R. T., Arthur, M. A., & Dean, W. E. (1997). History of water- column anoxia in the Black Sea indicated by pyrite. Earth and Planetary Science Letters 148(3-4), 517-525.
  45. Wilkin, R. T., & Barnes, H. L. (1996). Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta 60(21), 4167-4179.
  46. Wilkin, R. T., & Barnes, H. L. (1997a). Formation processes of fram- boidal pyrite. Geochimica et Cosmochimica Acta 61(2), 323-339.
  47. Wilkin, R. T., & Barnes, H. L. (1997b). Pyrite formation in an anoxic estuarine basin. American Journal of Science 297(6), 620-650.
  48. Wilkin, R. T., Barnes, H. L., & Brantley, S. L. (1996). The size dis- tribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60(20), 3897- 3912.