Academia.eduAcademia.edu

Outline

Macropinocytosis, mTORC1 and cellular growth control

2018, Cellular and molecular life sciences : CMLS

https://doi.org/10.1007/S00018-017-2710-Y

Abstract

The growth and proliferation of metazoan cells are driven by cellular nutrient status and by extracellular growth factors. Growth factor receptors on cell surfaces initiate biochemical signals that increase anabolic metabolism and macropinocytosis, an actin-dependent endocytic process in which relatively large volumes of extracellular solutes and nutrients are internalized and delivered efficiently into lysosomes. Macropinocytosis is prominent in many kinds of cancer cells, and supports the growth of cells transformed by oncogenic K-Ras. Growth factor receptor signaling and the overall metabolic status of the cell are coordinated in the cytoplasm by the mechanistic target-of-rapamycin complex-1 (mTORC1), which positively regulates protein synthesis and negatively regulates molecular salvage pathways such as autophagy. mTORC1 is activated by two distinct Ras-related small GTPases, Rag and Rheb, which associate with lysosomal membranes inside the cell. Rag recruits mTORC1 to the lysos...

References (123)

  1. Swanson JA (2008) Shaping cups into phagosomes and macro- pinosomes. Nat Rev Mol Cell Biol 9(8):639-649
  2. Bloomfield G, Kay RR (2016) Uses and abuses of macropino- cytosis. J Cell Sci 129(14):2697-2705. https://doi.org/10.1242/ jcs.176149
  3. Lewis WH (1931) Pinocytosis. B Johns Hopkins Hosp 49:17-27
  4. Cohn ZA, Parks E (1967) The regulation of pinocytosis in mouse macrophages. IV. The immunological induction of pinocytic vesicles, secondary lysosomes, and hydrolytic enzymes. J Exp Med 125(6):1091-1104
  5. Amyere M, Payrastre B, Krause U, Van Der Smissen P, Veithen A, Courtoy PJ (2000) Constitutive macropinocytosis in onco- gene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell 11(10):3453-3467
  6. Veithen A, Cupers P, Baudhuin P, Courtoy PJ (1996) v-Src induces constitutive macropinocytosis in rat fibroblasts. J Cell Sci 109(Pt 8):2005-2012
  7. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Hei- den MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633-637. https://doi.org/10.1038/nature12138
  8. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB (2015) The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162(2):259-270. https://doi. org/10.1016/j.cell.2015.06.017
  9. Zeineddine R, Yerbury JJ (2015) The role of macropinocytosis in the propagation of protein aggregation associated with neurode- generative diseases. Front Physiol 6:277. https://doi.org/10.3389/ fphys.2015.00277
  10. Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY (2005) Macropinocytosis is the endo- cytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 280(3):2352- 2360. https://doi.org/10.1074/jbc.M407167200
  11. Chung JJ, Huber TB, Godel M, Jarad G, Hartleben B, Kwoh C, Keil A, Karpitskiy A, Hu J, Huh CJ, Cella M, Gross RW, Miner JH, Shaw AS (2015) Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Investig 125(6):2307- 2316. https://doi.org/10.1172/JCI79641
  12. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905-909
  13. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35-43
  14. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270(2):815-822
  15. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21-35. https://doi.org/10.1038/nrm3025
  16. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122-1128
  17. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erd- jument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskel- eton. Curr Biol 14(14):1296-1302. https://doi.org/10.1016/j. cub.2004.06.054
  18. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument- Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163-175
  19. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177-189
  20. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have dis- tinct roles in cell growth control. Mol Cell 10(3):457-468
  21. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873-886. https://doi. org/10.1016/j.cell.2009.03.046
  22. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316-323. https://doi.org/10.1038/ ncb1547
  23. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin- regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903-915. https://doi.org/10.1016/j.molcel.2007.03.003
  24. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282(28):20329-20339. https://doi.org/10.1074/jbc.M702636200
  25. Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20):2820-2832. https://doi.org/10.1101/gad.1461206
  26. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phos- phorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865-1870. https://doi.org/10.1016/j. cub.2006.08.001
  27. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR (2007) Identification of Protor as a novel Rictor-binding compo- nent of mTOR complex-2. Biochem J 405(3):513-522. https:// doi.org/10.1042/BJ20070540
  28. Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18(9):524-533. https://doi.org/10.1016/j.molmed.2012.05.007
  29. Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabo- lism, and cancer. Curr Opin Genet Dev 23(1):53-62. https://doi. org/10.1016/j.gde.2012.12.005
  30. Jewell JL, Guan KL (2013) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38(5):233-242. https://doi. org/10.1016/j.tibs.2013.01.004
  31. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K- mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320-328. https://doi.org/10.1016/j.tibs.2011.03.006
  32. Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15(6):555-564. https://doi.org/10.1038/ncb2763
  33. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400-406. https://doi. org/10.1016/j.tcb.2014.03.003
  34. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960-976
  35. Yao Y, Inoki K (2016) The role of mechanistic target of rapa- mycin in maintenance of glomerular epithelial cells. Curr Opin Nephrol Hypertens 25(1):28-34. https://doi.org/10.1097/ MNH.0000000000000181
  36. Kurdi A, De Meyer GR, Martinet W (2016) Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharma- col 82(5):1267-1279. https://doi.org/10.1111/bcp.12820
  37. Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR sign- aling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neuro- biol Dis 84:39-49. https://doi.org/10.1016/j.nbd.2015.03.014
  38. Pacitto R, Gaeta I, Swanson JA, Yoshida S (2017) CXCL12- induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages. J Leukoc Biol 101:683- 692. https://doi.org/10.1189/jlb.2A0316-141RR
  39. Zwartkruis FJ, Burgering BM (2013) Ras and macropino- cytosis: trick and treat. Cell Res 23(8):982-983. https://doi. org/10.1038/cr.2013.79
  40. Yoshida S, Pacitto R, Yao Y, Inoki K, Swanson JA (2015) Growth factor signaling to mTORC1 by amino acid-laden macropinosomes. J Cell Biol 211(1):159-172. https://doi. org/10.1083/jcb.201504097
  41. Sung S, Choi J, Cheong H (2015) Catabolic pathways regu- lated by mTORC1 are pivotal for survival and growth of cancer cells expressing mutant Ras. Oncotarget 6(38):40405-40417. https://doi.org/10.18632/oncotarget.6334
  42. Cheong H (2016) mTORC1 regulates nutrient access in Ras-mediated tumors. Aging 8(6):1165-1166. https://doi. org/10.18632/aging.100974
  43. Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005) Novel role of the small GTPase Rheb: its implication in endo- cytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137(3):423-430. https://doi. org/10.1093/jb/mvi046
  44. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290-303. https://doi.org/10.1016/j. cell.2010.02.024
  45. Betz C, Hall MN (2013) Where is mTOR and what is it doing there? J Cell Biol 203(4):563-574. https://doi.org/10.1083/ jcb.201306041
  46. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196-1208. https://doi. org/10.1016/j.cell.2012.07.032
  47. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)- ATPase. Science 334(6056):678-683. https://doi.org/10.1126/ science.1207056
  48. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188-194. https://doi.org/10.1126/ science.1257132
  49. Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti- Furga G (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519(7544):477-481. https://doi.org/10.1038/nature14107
  50. Jung J, Genau HM, Behrends C (2015) Amino acid-depend- ent mTORC1 regulation by the lysosomal membrane pro- tein SLC38A9. Mol Cell Biol 35(14):2479-2494. https://doi. org/10.1128/MCB.00125-15
  51. Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freink- man E, Danai LV, Vander Heiden MG, Sabatini DM (2017) mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171(3):642-654 e612. https://doi.org/10.1016/j.cell.2017.09.046
  52. Hallett JE, Manning BD (2016) CASTORing new light on amino acid sensing. Cell 165(1):15-17. https://doi.org/10.1016/j. cell.2016.03.002
  53. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100-1106. https://doi.org/10.1126/ science.1232044
  54. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM (2014) The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9(1):1-8. https://doi.org/10.1016/j.celrep.2014.09.014
  55. Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to con- trol mTORC1 signaling. Cell 159(1):122-133. https://doi. org/10.1016/j.cell.2014.08.038
  56. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351(6268):43-48. https://doi. org/10.1126/science.aab2674
  57. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165(1):153-164. https://doi.org/10.1016/j. cell.2016.02.035
  58. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL (2015) Metabolism. Differen- tial regulation of mTORC1 by leucine and glutamine. Science 347(6218):194-198. https://doi.org/10.1126/science.1259472
  59. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacK- eigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Mur- phy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521-534
  60. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag- mTORC1 signaling. Mol Cell 47(3):349-358
  61. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496-1501. https://doi.org/10.1126/science.1157535
  62. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566-571. https://doi. org/10.1038/ncb996
  63. Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essen- tial regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559-565. https://doi.org/10.1038/ncb995
  64. Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Taka- hashi H, Cantley LC, Manning BD (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156(4):771-785. https://doi. org/10.1016/j.cell.2013.11.049
  65. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signal- ing. Genes Dev 17(15):1829-1834. https://doi.org/10.1101/ gad.1110003
  66. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insu- lin activation of Rheb, a mediator of mTOR/S6K/4E-BP signal- ing, is inhibited by TSC1 and 2. Mol Cell 11(6):1457-1466
  67. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppres- sor proteins. Nat Cell Biol 5(6):578-581. https://doi.org/10.1038/ ncb999
  68. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phospho- rylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648-657. https://doi.org/10.1038/ncb839
  69. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658-665. https://doi.org/10.1038/ncb840
  70. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor sup- pressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151-162
  71. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor- promoting phorbol esters and activated Ras inactivate the tuber- ous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101(37):13489-13494. https:// doi.org/10.1073/pnas.0405659101
  72. Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25(9):545-555. https://doi. org/10.1016/j.tcb.2015.06.002
  73. Benjamin D, Hall MN (2014) mTORC1: turning off is just as important as turning on. Cell 156(4):627-628. https://doi. org/10.1016/j.cell.2014.01.057
  74. Demetriades C, Doumpas N, Teleman AA (2014) Regula- tion of TORC1 in response to amino acid starvation via lyso- somal recruitment of TSC2. Cell 156(4):786-799. https://doi. org/10.1016/j.cell.2014.01.024
  75. Carroll B, Maetzel D, Maddocks OD, Otten G, Ratcliff M, Smith GR, Dunlop EA, Passos JF, Davies OR, Jaenisch R, Tee AR, Sarkar S, Korolchuk VI (2016) Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife. https://doi. org/10.7554/eLife.11058
  76. Swanson JA (2014) Phosphoinositides and engulfment. Cell Microbiol 16(10):1473-1483. https://doi.org/10.1111/cmi.12334
  77. Mayor S, Parton RG, Donaldson JG (2014) Clathrin-independ- ent pathways of endocytosis. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a016758
  78. Shibutani S, Okazaki H, Iwata H (2017) Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1). J Biol Chem. https://doi.org/10.1074/jbc. M117.776443
  79. Li L, Kim E, Yuan H, Inoki K, Goraksha-Hicks P, Schiesher RL, Neufeld TP, Guan KL (2010) Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 285(26):19705-19709. https:// doi.org/10.1074/jbc.C110.102483
  80. Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21(5):833-841. https://doi.org/10.1091/mbc.E09-09-0756
  81. Saci A, Cantley LC, Carpenter CL (2011) Rac1 regulates the activity of mTORC1 and mTORC2 and controls cel- lular size. Mol Cell 42(1):50-61. https://doi.org/10.1016/j. molcel.2011.03.017
  82. Buckley CM, King JS (2017) Drinking problems: mechanisms of macropinosome formation and maturation. Febs J. https://doi. org/10.1111/febs.14115
  83. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942-946. https://doi.org/10.1038/nature09076
  84. Tan HWS, Sim AYL, Long YC (2017) Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation dur- ing amino acid starvation. Nat Commun 8(1):338. https://doi. org/10.1038/s41467-017-00369-y
  85. Bar-Sagi D, Feramisco JR (1986) Induction of membrane ruf- fling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233(4768):1061-1068
  86. Egami Y, Taguchi T, Maekawa M, Arai H, Araki N (2014) Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Front Physiol 5:374. https://doi.org/10.3389/fphys.2014.00374
  87. Yoshida S, Hoppe AD, Araki N, Swanson JA (2009) Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. J Cell Sci 122(Pt 18):3250-3261. https://doi.org/10.1242/jcs.053207
  88. Racoosin EL, Swanson JA (1993) Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol 121(5):1011-1020
  89. Hewlett LJ, Prescott AR, Watts C (1994) The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol 124(5):689-703
  90. Welliver TP, Chang SL, Linderman JJ, Swanson JA (2011) Ruf- fles limit diffusion in the plasma membrane during macropino- some formation. J Cell Sci 124(Pt 23):4106-4114
  91. de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14(5):623-625. https://doi.org/10.1038/sj.onc.1201005
  92. Welliver TP, Swanson JA (2012) A growth factor signaling cascade confined to circular ruffles in macrophages. Biol Open 1(8):754-760. https://doi.org/10.1242/bio.20121784
  93. Dubielecka PM, Cui P, Xiong X, Hossain S, Heck S, Angelov L, Kotula L (2010) Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms. PLoS One 5(5):e10430. https://doi. org/10.1371/journal.pone.0010430
  94. Schlunck G, Damke H, Kiosses WB, Rusk N, Symons MH, Waterman-Storer CM, Schmid SL, Schwartz MA (2004) Modu- lation of Rac localization and function by dynamin. Mol Biol Cell 15(1):256-267. https://doi.org/10.1091/mbc.E03-01-0019
  95. Lanzetti L, Palamidessi A, Areces L, Scita G, Di Fiore PP (2004) Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429(6989):309-314. https:// doi.org/10.1038/nature02542
  96. Hoon JL, Wong WK, Koh CG (2012) Functions and regulation of circular dorsal ruffles. Mol Cell Biol 32(21):4246-4257. https:// doi.org/10.1128/MCB.00551-12
  97. Itoh T, Hasegawa J (2013) Mechanistic insights into the regula- tion of circular dorsal ruffle formation. J Biochem 153(1):21-29. https://doi.org/10.1093/jb/mvs138
  98. Araki N, Johnson MT, Swanson JA (1996) A role for phospho- inositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135(5):1249-1260
  99. Araki N, Egami Y, Watanabe Y, Hatae T (2007) Phospho- inositide metabolism during membrane ruffling and macropino- some formation in EGF-stimulated A431 cells. Exp Cell Res 313(7):1496-1507. https://doi.org/10.1016/j.yexcr.2007.02.012
  100. Dubielecka PM, Machida K, Xiong X, Hossain S, Ogiue-Ikeda M, Carrera AC, Mayer BJ, Kotula L (2010) Abi1/Hssh3bp1 pY213 links Abl kinase signaling to p85 regulatory subunit of PI-3 kinase in regulation of macropinocytosis in LNCaP cells. FEBS Lett 584(15):3279-3286. https://doi.org/10.1016/j. febslet.2010.06.029
  101. Yoshida S, Gaeta I, Pacitto R, Krienke L, Alge O, Gregorka B, Swanson JA (2015) Differential signaling during macropinocy- tosis in response to M-CSF and PMA in macrophages. Front Physiol 6:8
  102. Liu WS, Heckman CA (1998) The sevenfold way of PKC regula- tion. Cell Signal 10(8):529-542
  103. Ard R, Mulatz K, Pomoransky JL, Parks RJ, Trinkle-Mulcahy L, Bell JC, Gee SH (2015) Regulation of macropinocytosis by diacylglycerol kinase zeta. PLoS One 10(12):e0144942. https:// doi.org/10.1371/journal.pone.0144942
  104. Porat-Shliom N, Kloog Y, Donaldson JG (2008) A unique plat- form for H-Ras signaling involving clathrin-independent endo- cytosis. Mol Biol Cell 19(3):765-775. https://doi.org/10.1091/ mbc.E07-08-0841
  105. Li G, D'Souza-Schorey C, Barbieri MA, Cooper JA, Stahl PD (1997) Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J Biol Chem 272(16):10337-10340
  106. Palm W, Araki J, King B, DeMatteo RG, Thompson CB (2017) Critical role for PI3-kinase in regulating the use of proteins as an amino acid source. Proc Natl Acad Sci USA. https://doi. org/10.1073/pnas.1712726114
  107. Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL (2017) Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase gamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem 292(11):4411-4422. https://doi.org/10.1074/jbc.M116.766337
  108. Bloomfield G, Traynor D, Sander SP, Veltman DM, Pachebat JA, Kay RR (2015) Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife. https://doi.org/10.7554/ eLife.04940
  109. Veltman DM, Williams TD, Bloomfield G, Chen BC, Betzig E, Insall RH, Kay RR (2016) A plasma membrane template for macropinocytic cups. eLife. https://doi.org/10.7554/eLife.20085
  110. Swanson JA (1989) Phorbol esters stimulate macropinocy- tosis and solute flow through macrophages. J Cell Sci 94(Pt 1):135-142
  111. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S (2010) Amiloride inhibits macropinocytosis by lowering submembranous pH and prevent- ing Rac1 and Cdc42 signaling. J Cell Biol 188(4):547-563. https://doi.org/10.1083/jcb.200908086
  112. Marat AL, Haucke V (2016) Phosphatidylinositol 3-phos- phates-at the interface between cell signalling and membrane traffic. EMBO J 35(6):561-579. https://doi.org/10.15252/ embj.201593564
  113. Shisheva A (2008) PIKfyve: partners, significance, debates and paradoxes. Cell Biol Int 32(6):591-604. https://doi.org/10.1016/j. cellbi.2008.01.006
  114. Bridges D, Ma JT, Park S, Inoki K, Weisman LS, Saltiel AR (2012) Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 23(15):2955-2962. https://doi. org/10.1091/mbc.E11-12-1034
  115. Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16(8):403-412. https://doi.org/10.1016/j.tcb.2006.06.001
  116. Hao F, Itoh T, Morita E, Shirahama-Noda K, Yoshimori T, Noda T (2016) The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett 590(1):161-173. https://doi.org/10.1002/1873-3468.12048
  117. Erami Z, Khalil BD, Salloum G, Yao Y, LoPiccolo J, Shymanets A, Nurnberg B, Bresnick AR, Backer JM (2017) Rac1-stimulated macropinocytosis enhances Gβγ activation of PI3Kβ. Biochem J. https://doi.org/10.1042/BCJ20170279
  118. Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M (2009) The novel lipid raft adaptor p18 controls endo- some dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 28(5):477-489. https://doi.org/10.1038/ emboj.2008.308
  119. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grab- ocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, Thompson CB, Rabinowitz JD (2015) Human pancreatic cancer tumors are nutrient poor and tumor cells actively scav- enge extracellular protein. Can Res 75(3):544-553. https://doi. org/10.1158/0008-5472.CAN-14-2211
  120. Tajiri H, Uruno T, Shirai T, Takaya D, Matsunaga S, Setoyama D, Watanabe M, Kukimoto-Niino M, Oisaki K, Ushijima M, Sanematsu F, Honma T, Terada T, Oki E, Shirasawa S, Maehara Y, Kang D, Cote JF, Yokoyama S, Kanai M, Fukui Y (2017) Targeting Ras-driven cancer cell survival and invasion through selective inhibition of DOCK1. Cell Rep 19(5):969-980. https:// doi.org/10.1016/j.celrep.2017.04.016
  121. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27-47. https://doi. org/10.1016/j.cmet.2015.12.006
  122. Nofal M, Zhang K, Han S, Rabinowitz JD (2017) mTOR inhibi- tion restores amino acid balance in cells dependent on catabolism of extracellular protein. Mol Cell 67(6):936-946 e935. https:// doi.org/10.1016/j.molcel.2017.08.011
  123. Nathan N, Keppler-Noreuil KM, Biesecker LG, Moss J, Dar- ling TN (2017) Mosaic disorders of the PI3K/PTEN/AKT/TSC/ mTORC1 signaling pathway. Dermatol Clin 35(1):51-60. https:// doi.org/10.1016/j.det.2016.07.001