Academia.eduAcademia.edu

Outline

A Comprehensive Review of Milk Fouling on Heated Surfaces

https://doi.org/10.1080/10408398.2012.752343

Abstract

Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

References (178)

  1. Amjad, Z. (1998). Calcium Phosphate in Biological and Industrial Systems. The BF Goodrich Company (Eds.), Kluwer Academic Publishers, Boston6 Dordrecht6 London.
  2. Anema, S. G. and McKenna, A. B. (1996). Reaction kinetics of thermal dena- turation of whey proteins in heated reconstituted whole milk. J. Agric. Food Chem. 44:422-428.
  3. Arnebrant, T., Barton, K. and Nylander, T. (1987). Adsorption of a-lactalbu- min and b-lactoglobulin on metal surfaces versus temperature. J. Colloid. Interface Sci. 119(2):383-390.
  4. Augustin, W., Geddert, T. and Scholl, S. (2007). Surface treatment for the mit- igation of whey protein fouling. In Proceedings of 7th International Confer- ence on Heat Exchanger Fouling and Cleaning -Challenges and Opportunities (Vol. RP5, pp. 206-214). ECI Symposium Series, Tomar, Portugal.
  5. Ayadi, M. A., Bouvier, L., Chopard, F., Berthou, M., Fillaudeau, L. and Leuliet, J. C. (2003). Heat treatment improvement of dairy products via ohmic heating processes: Thermal and hydrodynamic effect on fouling. Proceedings of Heat Exchanger Fouling and Cleaning-Fundamentals and Applications, Santa Fe, USA.
  6. Ayadi, M. A., Chopard, F., Berthou, M. and Leuliet, J. C. (2003). Ohmic heating unit performance under whey proteins fouling. In: Proceedings of International Conference Engineering and Food (ICEF9). Montpellier, France.
  7. Ayadi, M. A., Leuliet, J. C., Chopard, F., Berthou, M. and Lebouche, M. (2004). Continuous ohmic heating unit under whey protein fouling. Innova- tive Food Sci. Emerg. Technol. 5(4):465-473.
  8. Bansal, B. and Chen, X. D. (2005). Fouling of heat exchangers by dairy flu- ids-A review. In: Proceedings of 6th International Conference on Heat Exchanger Fouling and Cleaning-Challenges and Opportunities, Vol. RP2, pp. 149-157. M€ uller-Steinhagen, H., Malayeri, M. R. & Watkinson, A. P., Eds., Engineering Conferences International, Kloster Irsee, Germany.
  9. Bansal, B. and Chen, X. D. (2006). A Critical Review of Milk Fouling in Heat Exchangers. Compre. Rev. Food Sci. Food Safety. 5(2):27-33.
  10. Bell, K. J. and Mueller, A. C. (2001). Wolverine Heat Transfer Data book II. In (online ed.): Wolverine Tube, Inc.
  11. Bell, R. W. and Sanders, C. F. (1944). Prevention of milkstone formation in a high-temperature-short-time heater by preheating milk, skim milk and whey. J. Dairy Sci. 27:499-504.
  12. Belmar-Beiny, M. T. and Fryer, P. J. (1993). Preliminary stages of fouling from whey protein solutions. J. Dairy Res. 60:467-483.
  13. Belmar-Beiny, M. T., Gotham, S. M., Paterson, W. R., Fryer, P. J. and Pritch- ard, A. M. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. J. Food Eng. 19:119-139.
  14. Bennett, S. C. and Newman, G. (2004). Information, Australia. Dept. of the Parliamentary Library, and Services, Research. Queensland election 2004: Dept. of the Parliamentary Library.
  15. Beuf, M., Rizzo, G., Leuliet, J. C., M€ uller-Steinhagen, H., Yiantsios, S., Kara- belas, A. and Benezech, T. (2003a). Fouling and cleaning of modified stain- less steel plate heat exchangers processing milk products. In 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Vol. RP1, pp. Article 14, pp. 99-106. ECI, Santa Fe, New Mexico, USA
  16. Beuf, M., Rizzo, G., Leuliet, J. C., M€ uller-Steinhagen, H., Yiantsios, S., Kara- belas, A. and Benezech, T. (2003b). Potency of stainless steel modifications in reducing fouling and in improving cleaning of plate heat exchangers proc- essing dairy products. Proceedings of Heat Exchanger Fouling and Clean- ing-Fundamentals and Applications, Santa Fe, USA.
  17. Biddle, V. (1986). Chemistry precision and design. A Beca book science series, A Beca book publications.
  18. Bird, M. R. and Fryer, P. J. (1991). An experimental study of the cleaning of surface fouled by whey proteins. Food Bioprod. Proc. 69C:13-21.
  19. Bott, T. R. (1993). Aspects of biofilm formation and destruction. Corrosion Rev. 11(1-2):1-24.
  20. Bott, T. R. (1994). Fouling of Heat Exchangers. Elsevier Science B.V., The Netherlands.
  21. Bott, T. R. (1995). Fouling of Heat Exchangers: Elsevier Science & Technology Books.
  22. Bradley, S. E. and Fryer, P. J. (1992). A comparison of two fouling-resistant heat exchangers. Biofouling. 5:295-314.
  23. Britten, M., Green, M. L., Boulet, M. and Paquin, P. (1988). Deposit formation on heated surfaces: Effect of interface energetics. J. Dairy Res. 55:551-562.
  24. Burton, H. (1967). Seasonal variation in deposit formation from whole milk on a heated surface. J. Dairy Res. 34:137-143.
  25. Burton, H. (1968). Deposits from whole milk in heat treatment plant -a review and discussion. J. Dairy Res. 35:317-330.
  26. Bylund, G. (1995). Dairy Processing Handbook. Tetra Pak Processing Systems AB, Sweden.
  27. Calvo, M. M., and de Rafael, D. (1995). Deposit formation in a heat exchanger during pasteurization of CO2-acidified milk. Journal of Dairy Research. 62 (04):641-644.
  28. Changani, S. D., Belmar-Beiny, M. T. and Fryer, P. J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Exp. Thermal Fluid Sci. 14:392-406.
  29. Chen, J. (2000). Computer Simulation of Whey Protein based Milk Fouling. The University of Auckland, Auckland, New Zealand.
  30. Chen, X. D. and Bala, P. (1998). Investigation of the influences of surface and bulk temperatures upon fouling of milk components onto a stainless steel probe. Proceedings of Fouling and Cleaning in Food Processing, pp. 25-32. Jesus College, Cambridge, England.
  31. Chen, X. D., Chen, J. and Wilson, D. I. (2001). Modelling whey protein based fouling of heat exchangers-Further examining the deposition mechanisms. In Proceedings of Heat Exchanger Fouling-Fundamental Approaches & Technical Solutions. Davos, Switzerland.
  32. Chen, X. D., Chen, Z. D., Nguang, S. K. and Anema, S. (1998). Exploring the reaction kinetics of whey protein denaturation6 aggregation by assuming the denaturation step is reversible. Biochem. Eng. J. 2(1):63-69.
  33. Chen, X. D., Li, D. X. Y., Lin, S. X. D. and € Ozkan, N. (2004). On-line fou- ling6 cleaning detection by measuring electric resistance-equipment development and application to milk fouling detection and chemical clean- ing monitoring. J. Food Eng. 61:181-189.
  34. Chen, X. D., Yoo, J., Benjamin, A. and Turner, M. (1998). Study of bacteria 'transportation' in model milk foulant and bacteria emission from milk foul- ing layer into streams of rinse water, Milk and Cleaning Chemical Solutions. In Wilson, P. D. I., Fryer, J. & Hasting, A. P. M. (Eds.), Proceedings of Con- ference on Fouling and Cleaning in Food Processing '98 (Vol. 79-96). Jesus College, Cambridge, England.
  35. Christian, G. K., Changani, S. D. and Fryer, P. J. (2002). The effect of adding minerals on fouling from whey protein concentrate-Development of a model fouling fluid for a plate heat exchanger. Food Bioprod. Process. 90(4):231-239.
  36. Corredig, M. and Dalgleish, D. G. (1996). temperature and pH on the interac- tions of whey proteins with casein micelles in skim milk. Food Res. Int. 29(1):49-55.
  37. Dalgleish, D. G. (1990). Denaturation and aggregation of serum proteins and caseins in heated milk. J. Agric. Food Chem. 38(11):1995-1999.
  38. Davies, T. J., Henstridge, S. C., Gillham, C. R. and Wilson, D. I. (1997). Inves- tigation of whey protein deposit properties using heat flux sensors. Food Bioprod. Proc. 75:106-110.
  39. deAlwis, A. A. P. and Fryer, P. (1990). The use of direct resistance heating in the food industry. J. Food Eng. 11:3-27.
  40. deJong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Sci. Technol. 8(12):401-405.
  41. de Jong, P., Bouman, S., and van der Linden, H. J. L. J. (1992). Fouling of heat transfer equipment in relation to the of -lactoglobulin. J. Soc. Dairy Technol. 45:3-8.
  42. deJong, P., Horst, H. C. v. d., Waalewijn, R., Fouling, R. o. p. a. m. f., Cleaning in Food Processing '98, J. C. and Cambridge, U.-. (1998). Reduction of protein and mineral fouling. Fouling and Cleaning in Food Processing '98, pp. 39-46. Jesus College, Cambridge, UK.
  43. Delplace, F. and Leutiet, J. C. (1995). Modeling fouling of a plate heat exchanger with different flow arrangements by whey protein solutions. Trans. IChemE, Food Bioprod. Proc. 73:112-120.
  44. Delplace, F., Leuliet, J. C. and Levieux, D. (1997). reaction engineering approach to the analysis of fouling by whey proteins of a six-channel-per- pass plate heat exchanger. J. Food Eng. 34:91-108.
  45. Delplace, F., Leuliet, J. C. and Tissier, J. P. (1994). Fouling experiments of a plate heat exchanger by whey proteins solutions. Trans. IChemE (Part C) 72:163-169.
  46. Delsing, B. M. A. and Hiddink, J. (1983). Fouling of heat transfer surfaces by dairy liquids. Netherlands Milk Dairy J. 37:139-148.
  47. deWit, J. N., Klarenbeek, G. and Adamse, M. (1986). Evaluation of functional properties of whey protein concentrates and whey protein isolates. Part 2. Effects of processing history and composition. Netherlands Milk Dairy J. 40:41-56.
  48. de Wit, J. N. and Swinkles, G. A. M. (1980). A differential scanning calorimet- ric study of the thermal denaturation of bovine-lactoglobulin-thermal behav- iours at temperatures up to 100 C. Biochim. Biophys. Acta. 64:40-50.
  49. Dupeyrat, M., Labbe, J. P., Michel, F., Billoudet, F. and Daufin, G. (1987). Wettability and solidfiquia interaction during fouling of several materials by whey and milk. Le Lait. 67:465-486.
  50. Elofsson, U. M., Paulsson, M. A., Sellers, P. and Arnebrant, T. (1996). Adsorp- tion during heat treatment related to the thermal unfolding6 aggregation of b-lactoglobulin A and B. 183:408-415.
  51. Fickak, A., Al-Raisi, A. and Chen, X. D. (2011). Effect of whey protein con- centration on the fouling and cleaning of a heat transfer surface. J. Food Eng. 104:323-331.
  52. Flint, S. H., Brook, J. D., vandenElzen, H. and Bremer, P. J. (1997). Biofilms in dairy manufacturing plant-A threat to product quality. Food Technol. (New Zealand). 27(2):61-64.
  53. Flint, S. H., Brooks, J. D. and Bremer, P. J. (2000). Properties of the stainless steel substrate influencing the adhesion of thermo-resistant streptococci. J. Food Eng. 43(4):235-242.
  54. Flint, S. H., vandenElzen, H., Brooks, J. D. and Bremer, P. J. (1999). Removal and inactivation of thermo-resistant streptococci colonising stainless steel. Int. Dairy J. 9(7):429-436.
  55. Flint, S., Hartley, N., selective, A. m., cause, m. f. t. d. o. p. s. t., Dairy, s. o. m. a. d. p. I., & 223-230, J. (1996). A modified selective medium for the detec- tion of pseudomonas species that cause spoilage of milk and dairy products. Int. Dairy J. 6(2):223-230.
  56. Foster, C. L., Britten, M. and Green, M. L. (1989). model heat-exchanger apparatus for the investigation of fouling of stainless steel surfaces by milkI. deposit formation at 100 C. J. Dairy Res. 56:201-209.
  57. Fryer, P. J. and Belmar-Beiny, M. T. (1991). Fouling of heat exchangers in the food industry: A chemical engineering perspective. Trends Food Sci. Tech- nol. 1991:33-37.
  58. Fryer, P. J., deAlwis, A. A. P., Koury, E., Stapley, A. G. F. and Zhang, L. (1993). Ohmic processing of solid-liquid mixtures: Heat generation and con- vection effects. J. Food Eng. 18:101-125.
  59. Fryer, P. J., Hasting, A. P. M. and Jeurnink, T. J. M. (1996). Fouling, cleaning and disinfection in food processing. Fouling. Cleaning and Disinfection in Food Processing, EUR 16894, p. 248.
  60. Fryer, P. J., Robbins, P. T., Green, C., Schreier, P. J. R., Pritchard, A. M., Hast- ing, A. P. M., Member, Royston and Richardson, J. F. (1996). A statistical- model for foulingof a plate heat exchanger bywhey protein solution at UHT conditions. Inst. Chem. Eng. 74(4):189-199.
  61. Fung, L., McCarthy, O. J. and Tuoc, T. K. (1998). effect of fat globule mem- brane damage on fouling of whole milk. Fouling and Cleaning in Food Processing '98, pp. 33-38. Jesus College, Cambridge, UK.
  62. Gallot-Lavallee, T. and Lalande, M. (1985). A mechanistic approach of pas- teurised milk deposit cleaning. In: Fouling and Cleaning in Food Process- ing, pp. 374-394, Lund, D., Plett, E. A. and Sandu, C. (Eds.), Madison, USA. Georgiadis, M. C. and Macchiatto, S. (2000). Dynamic modeling and simula- tion of plate heat exchangers under milk fouling. Chem. Eng. Sci. 55 (9):1065-1619.
  63. Georgiadis, M. C., Rotstein, G. E. and Macchietto, S. (1998a). Modelling and simulation of complex plate heat exchanger arrangements under milk foul- ing. Comp. Chem. Eng. 22(Suppl 1):S331-S338.
  64. Georgiadis, M. C., Rotstein, G. E. and Macchietto, S. (1998b). Optimal design and operation of heat exchangers under milk fouling. AIChE J. 44(9): 2099-2111.
  65. Gillham, C. R. (1997). Enhanced cleaning of sudaces fouled by whey proleins. University of Cambridge, UK.
  66. Gillham, C. R., Fryer, P. J. and Hasting, A. P. M. (2000). Enhanced cleaning of whey protein soils using pulsed flows. J. Food Eng. 46:199-209.
  67. Gillham, C. R., Fryer, P. J., Hasting, A. P. M. and Wilson, D. I. (1999). Clean- ing-in-place of whey protein fouling deposits: Mechanisms controlling cleaning. Food Bioprod. Proc. 77(Part C):127-136.
  68. Gotham, S. M. (1990). Mechanism of Protein Fouling of Heat Exchangers. University of Cambridge.
  69. Gotham, S. M., Fryer, P. J. and Pritchard, A. M. (1992). b-lactoglobulin dena- turation and aggregation reactions and fouling deposit formation: A DSC study. Int. J. Food Sci. Technol. 27:313-327.
  70. Grandison, A. S. (1988). UHT processing of milk-Seasonal variation in deposit formation in heat-exchangers. Journal of the Society of Dairy Tech- nology. 41(2):43-49.
  71. Grijspeerdt, K., Mortier, L., de Block, J. and van Renterghem, R. (2004). Applications of modeling to optimize ultra high temperature milk heat exchangers with respect to fouling. Food Control 15:117-130.
  72. Grasshoff, A. (1989). Environmental aspects of the use of alkaline cleaning solutions. In: Fouling and cleaning in food processing, Kessler H. G. and Lund D. B. (Eds.), Munich University, Federal Republic of Germany.
  73. Hege, W. U. and Kessler, H. G. (1986). Deposit formation of protein contain- ing dairy liquids. Milchwissenschaft. 41:356-360.
  74. Hooper, R. J., Paterson, W. R. and Wilson, D. I. (2006). Comparison of whey protein model foulants for Studying cleaning of milk fouling deposits. Food Bioprod. Proc. 84(C4):329-337.
  75. Jeurnink, T. and Brinkman, D. W. (1994). The cleaning of heat exchangers and evaporators after processing milk or whey. Int. Dairy J. 4:347-368.
  76. Jeurnink, T. J. M., Brinkman, D. W. and Stemerdink, A. D. (1989). Distribu- tion and composition of deposit in heat exchangers. In Proceeding of the Third International Conference on Fouling and Cleaning in Food Processing (25-35). University of Munich. Munich, Germany.
  77. Jeurnink, T. J. M. and Kruif, K. G. d. (1995). Calcium-concentration in milk in relation to heat-stability and fouling. Netherlands Milk and Dairy Journal. 49(2-3):151-165.
  78. Jeurnink, T., Verheul, M., Stuart, M. C. and deKruif, C. (1996). Deposition of heated whey proteins on a chromium oxide surface. Colloids Surfaces B: Biointerfaces. 6:291-307.
  79. Jeurnink, T. J. M., Walstra, P. and deKruif, C. G. (1996). Mechanism of foul- ing in dairy processing. Netherlands Milk and Dairy J. 50:407-426.
  80. Johnson, J. J. and Roland, C. T. (1940). Study of dairy cleaning problems. I. Films and deposits on hot milk equipment. Journal of Dairy Science. 23, 457-461.
  81. Kananeh, A. B., Scharnbeck, E. and Hartmann, D. (2009). Application of anti- fouling surfaces in plate heat exchanger for food Production. In: M€ uller- Steinhagen, H., Malayeri, M. R. & Watkinson, A. P. (Eds.), Proceedings of International Conference on Heat Exchanger Fouling and Cleaning VIII- 2009 (Peer-reviewed). Schladming, Austria.
  82. Kananeh, A. B., Scharnbeck, E., K€ uckb, U. D. and R€ abigerb, N. (2010). Reduction of milk fouling inside gasketed plate heat exchanger using nano- coatings. Food Bioprod. Proc. 8(8):349-356.
  83. Kane, D. R. and Middlemiss, N. E. (1985). Cleaning chemicals-state of the knowledge in 1985. In: Lund, D., Plett, E. A. & Sandu, C. (Eds.), Fouling and Cleaning in Food Processing (pp. 312-335). Madison, USA.
  84. Karlsson, C. A. C., Wahlgren, M. C. and Tr€ aga rdh, A. C. (1996). b-Lactoglob- ulin fouling and its removal upon rinsing and by SDS as influenced by sur- face characteristics, temperature and adsorption time. J. Food Eng. 30: 43-60.
  85. Kessler, H. G. and Beyer, H. J. (1991). Thermal denaturation of whey proteins and its effect in dairy technology. Int. J. Biol. Macromol. 13:165-173.
  86. Kindle, G., Busse, A., Kampa, D., Meyer-Konig, U. and Daschner, F. D. (1996). Killing activity of microwaves in milk. J. Hospital Infect. 33 (4):273-278.
  87. Kittaka, S. (1974). Isoelectric point of Al 2 O 3 , Cr 2 O 3 and Fe 2 O 3 : Eff. Heat Treat. 48(2):327-333.
  88. Koopal, L. K. (1985). Physico-chemical aspects of hard surface cleaning 1.soil removal mechanisms. Milk Dairy J. 39:127-154.
  89. Krause, S. (1993). Fouling of heat-transfer surfaces by crystallization and sedi- mentation. Int. Chem. Eng. 33:355-401.
  90. K€ uck, U. D., Hartmann, D., Manske, S., K€ uck, A. and R€ abiger, N. (2007). Entwicklung neuer Verarbeitungsprozesse f€ ur die Lebensmittelherstellung durch Anwendung von neuartigen funktionalen Materialoberfl€ achen. AiFAbschlußbericht (AiF-Nr. 14228N6 1), Bremen.
  91. Lalande, M. and Ren e, F. (1988). Fouling by milk and dairy product and clean- ing of heat exchanger surfaces. In: Melo, L. F., Bott, T. R. & Bernardo, C. A. (Eds.), Fouling Science and Technology (pp. 557-573). Kluwer, Amster- dam, Netherlands.
  92. Lalande, M. and Reno, F. (1988). Fouling by milk and dairy product and clean- ing of heat exchange surfaces. In: Melo, L. F., Bott, T. R. & Bernardo, C. A. (Eds.), Fouling Science and Technology, NATO ASI Series E (pp. 557-573). Kluwer, Amsterdam, Netherland.
  93. Lalande, M., Tissier, J. P. and Corrieu, G. (1984). Fouling of a plate exchanger used in ultra-high-temperature sterilisation of milk. J. Dairy Res. 51: 557-568.
  94. Lalande, M., Tissier, J. P. and Corrieu, G. (1985). Fouling of heat transfer sur- faces related to b-lactoglobulin denaturation during heat processing of milk. Biotechnol. Prog. 1(2):131-139.
  95. Langton, M. and Hermansson, A. M. (1992). Fine-stranded and particulate gels of blactoglobulin and whey protein at varying pH. Food Hydrocolloids. 5:523-539.
  96. Lund, D. B. and Bixby, B. (1975). Fouling of heat exchanger surfaces by milk. Proc. Biochem. 10:52-55.
  97. Lyster, R. L. J. (1965). The composition of milk deposits in UHT plan. J. Dairy Res. Rep. 32:203-205.
  98. Lyster, R. L. J. (1970). The denaturation of a-lactalbumin and b-lactoglobulin in heated milk. J. Dairy Res. 37:233-243.
  99. Ma, C. H. C., Trinh, K. T., Brooks, J. D. and Maddox, I. S. (1998). Effect of fat content on the rate of fouling on heated surfaces by milk. In: 5th Annual New Zealand Engineering and Technology Postgraduate Conference. Pal- merston North, New Zealand.
  100. Mercad e-Prieto, R. and Chen, X. D. (2006). Dissolution of whey protein con- centrate gels in alkali. AIChE J. 52:792-803.
  101. Metaxas, A. C. and Meredith, R. J. (1988). Industrial Microwave Heating, pp. 296-321. Published by Peter Peregrinus Ltd., London, United Kingdom.
  102. Mleko, S. (1999). Effect of protein concentration on whey protein gels obtained by a two-stage heating process. Eur. Food Res. Technol. 209:389-392.
  103. Modler, H. W. (2000). Milk Processing. In: Food Proteins-Processing Appli- cations (pp. 1-88). Wiley-VCH Press, New York, NY.
  104. Modler, W. (2009). Pioneer paper: Value-added components derived from whey. Am. Dairy Sci. Assoc. http://www.adsa.org/Membership/Students/ GraduateStudentDivision.aspx
  105. Mottar, J. and Moermans, R. (1988). Optimization of the forewarming process with respect to deposit formation in indirect ultra high temperature plants and the quality of milk. J. Dairy Res. 55:563-568.
  106. Muller-Steinhagen, H. (1993). Fouling: The Ultimate Challenge for Heat Exchanger Design. In The sixth International Symposium on Transport Phenomena in Thermal Engineering (Vol. 2, pp. 811-823). Seoul, Korea.
  107. Mullin, J. W. (1993). Crystallization (3rd ed.), Butterworths, London.
  108. Mullin, J. W. (2001). Crystallization (4th ed.), Butterworth-Heinemann, Oxford.
  109. Mulvihill, D. M. and Donovan, M. (1987). Whey proteins and their thermal denaturation-A review. J. Food Sci. Technol. 11:43-75.
  110. Mulvihill, D. M., Rector, D. and Kinsella, J. E. (1990). Effects of structuring and destructuring anionic ions on the rheological properties of thermally induced b-lactoglobulin gels. Food Hydrocolloids 4:267-276.
  111. Narasimhan, B. (2001). Mathematical models describing polymer dissolution: Consequencesfor drug delivery. Adv. Drug Del. Rev. 48: 195-210.
  112. Nassauer, J. (1985). Adsorption und haftung an oberflachen und membranen. Institut fur Milchwirtschaft und Lebensmittelverfahrenstechnik, Technische Universitat Munchen, pp. 115-117.
  113. Nema, P. K. and Datta, A. K. (2005). A computer based solution to check the drop in milk outlet temperature due to fouling in a tubular heat exchanger. J. Food Eng. 71(2):133-142.
  114. Newstead, D. F., Groube, G. F., Smith, A. F. and Eiger, R. N. (1998). Fouling of UHT plants by recombined and fresh milk: Some effects of preheat treat- ment. Fouling and Cleaning in Food Processing '98, pp. 17-24. Jesus College, Cambridge, UK.
  115. Paterson, W. R. and Fryer, P. J. (1988). A reaction engineering approach to the analysis of fouling. Chem. Eng. Sci. 43(7):1714-1717.
  116. Peny, R. H. and Green, D. (1985). Chemical Engineers'Handbook. Mac Graw- Hill Inc., New York, USA.
  117. Petermeier, H., Benning, R., Delgado, A., Kulozik, U., Hinrichs, J. and Becker, T. (2002). Hybrid model of the fouling process in tubular heat exchangers for the dairy industry. J. Food Eng. 55:9-17.
  118. Polat, Z. (2009). Integrated approach to whey utilization through natural zeo- lite adsorption/desorption and fermentation, PhD Thesis, Izmir University, Turkey.
  119. Premathilaka, S., Hyland, M., Chen, X. and Bansal, B. (2006). A study of the effects of surface chemistry on the initial deposition mechanisms of dairy fouling. Trans. IChemE, Part C. 84(C4):265-273.
  120. Pritchard, N. J., deGoederen, G., Hasting, A. P. M., The removal of milk deposits from, heated surfaces by improved cleaning pro""rr, F. i. p. p., A. M' Pritchard (Eds.), & lnstitute of Corrosion Science and Technology, L., 467-475. (1988). The removal of milk deposits from heated surfaces by improved cleaning process. Fouling in process plant, A. M' Pritchard (Eds.), lnstitute of Corrosion Science and Technology, London, pp. 467-475.
  121. Puyol, P., Perez, M. D. and Horne, D. S. (2001). Heat-induced gelation of whey protein isolates (WPI): Effect of NaCl and protein concentration. Food Hydrocolloids, 15:233-237.
  122. Quarini, G. L. (1995). Thermalhydraulic aspects of the ohmic heating process. J. Food Eng. 24:561-574.
  123. Rakes, P. A., Swartzel, K. R. and Jones, V. A. (1986). Deposition of dairy pro- tein-containing fluids on heat exchanger surface. Biotechnol. Prog. 2(4): 210-217.
  124. Regester, G. O. and Smithers, G. W. (1991). Seasonal changes in the b-lacto- globulin, a-lactalbumin, glycomacropeptide, and casein content of whey protein concentrate. J. Dairy Sci. 74:796-802.
  125. Roefs, S. P. F. M. and deKruif, K. G. (1994). A model for the denaturation and aggregation of b-lactoglobulin. Eur. J. Biochem. 226:883-889.
  126. Rosmaninho, R. and Melo, L. F. (2006). Calcium phosphate deposition from simulated milk ultrafiltrate on different stainless steel-based surfaces. Int. Dairy J. 16:81-87.
  127. Rosmaninho, R. and Melo, L. F. (2007). Effect of proteins on calcium phos- phate deposition in turbulent flow as a function of surface properties. Exp. Thermal Fluid Sci. 32:357-386.
  128. Rosmaninho, R. and Melo, L. F. (2008). Protein-calcium phosphate interac- tions in fouling of modified stainless-steel surfaces by simulated milk. Int. Dairy J. 18:72-80.
  129. Rosmaninho, R., Rizzo, G., Muller-Steinhagen, H. and Melo, L. F. (2003). Study of the influence of bulk properties and surface tension on the deposition process of calcium phosphate on modified stainless steel. In: Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning, Fundamentals and Applications, Santa Fe, United States of America.
  130. Rosmaninho, R., Rizzo, G., Muller-Steinhagen, H. and Melo, L. F. (2005). Anti-fouling stainless steel based surfaces for milk heating processes. In: ECI Symposium Series, Volume RP2: Proceedings of 6th International Con- ference on Heat Exchanger Fouling and Cleaning-Challenges and Oppor- tunities, M€ uller-Steinhagen, Hans, Reza Malayeri, M., and Paul Watkinson, A. (Eds.), Engineering Conferences International, Kloster Irsee, Germany, June 5-10.
  131. Rosmaninho, R., Rochab, F., Rizzoc, G., M€ uller-Steinhagenc, H. and Meloa, L. F. (2007). Calcium phosphate fouling on TiN-coated stainless steel surfa- ces. Role of ions and particles. Chem. Eng. Sci. 62(14):3821-3831.
  132. Rosmaninho, R., Santos, O., Nylander, T., Paulsson, M., Beuf, M., Benezech, T., Yiantsios, S., Andritsos, N., Karabelas, A., Rizzo, G., Muller-Steinha- gen, H. and Melo, L. F. (2007). Modified stainless steel surfaces targeted to reduce fouling-Evaluation of fouling by milk components. J. Food Eng. 80:1176-1187.
  133. Rosmaninho, R., Visser, H. and Melo, L. F. (2001). The influence of Stainless Steel Characteristics on Calcium Phosphate and Milk Proteins Fouling. Pro- ceedings of Heat Exchanger Fouling Fundamentals Approaches and Techni- cal Solutions, Davos, Switzerland.
  134. Rosmaninho, R., Visser, H. and Melo, L. F. (2002). The role of calcium phos- phate in milk protein fouling at moderate and elevated temperatures. In: Muller-Steinhagen, H., Malayeri, M. R. & Watkinson, A. P. (Eds.), Proceed- ings of the conference on Heat Exchanger Fouling Fundamental Approaches and Technical Solutions, pp. 171-177. PUBLICO Publications. Essen, Germany.
  135. Ruegg, M., Moor, U. and Blanc, B. (1977). A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrates. J. Dairy Res. 44:509-520.
  136. Sadeghinezhad, E., Kazi, S. N., Badarudin, A., Zubair, M. N. M., Dehkordi, B. L. and Oon, C. S. (2013). A review of milk fouling on heat exchanger surfaces. Reviews in Chemical Engineering. 29(3):169-188.
  137. Sahoo, P. K., Ansari, I. A. and Datta, A. K. (2005). Milk fouling simulation in helical triple tube heat exchanger. J. Food Eng. 69:235-244.
  138. Santos, O., Nylander, T., Paulsson, M. and Tr€ aga rdh, C. (2001). Adsorption behaviour of b-Lactoglobulin on different types of stainless steel surfaces. Proceedings of Heat Exchanger Fouling-Fundamental Approaches & Technical Solutions, Davos, Switzerland.
  139. Santos, O., Nylander, T., Rizzo, G., M€ uller-Steinhagen, H., Tr€ aga rdh, C.,
  140. Paulsson, M., whey, S. o., of, p. a. u. t. f. r. P., and, H. E. F. a. C.-F. and Applications, S. F., USA. (2003). Study of whey protein adsorption under turbulent flow rate. Proceedings of Heat Exchanger Fouling and Cleaning- Fundamentals and Applications, Santa Fe, USA.
  141. Santos, O., Nylander, T., Rosmaninho, R., Rizzo, G., Yiantsios, S., Andritsos, N., Karabelas, A., Muller-Steinhage, H., Mel, L. F., Boulange-Peterman, L., Gabe, C., Braem, A., Tragardh, C. and Paulsson, M. (2004). Modified stain- less steel surfaces targeted to reduce fouling-Surface characterization. J. Food Eng. 64:63-79.
  142. Schreier, P. J. R. and Fryer, P. J. (1995). Heat exchanger fouling: A model study of the scaleup of laboratory data. Chem. Eng. Sci. 50(8):1311-1321.
  143. Schreier, P., Green, C., Pritchard, A., Fryer, P. P., 1994. Fouling experiments of a plate, Food, h. e. b. w. p. s. F. a. C. i., & Processing, C., UK, Cambridge University, pp. 9-16. (1994). Fouling experiments of a plate heat exchanger by whey proteins solutions. Fouling and Cleaning in Food Processing, pp. 9-16, Cambridge University, Cambridge, UK.
  144. Sharma, S. K. and Hill, A. R. (1983). Effect of milk concentration, pH and temperature on aggregation kinetics and coagulation properties of ultrafil- tered (UF) milk. Food Res. Int. 26:81-87.
  145. Sieber, R., Eberhard, P. and Gallmann, P. U. (1996). Heat treatment of milk in domestic microwave ovens. Int. Dairy J. 6(3):231-246.
  146. Skudder, P. and Biss, C. (1987). Aseptic processing of food products using ohmic heating. Chem. Eng. 26-28.
  147. Skudder, P. J., Brooker, B. E., Bonsey, A. D., and Alvarezguerrero, N. R. (1986). Effect of pH on the formation of deposit from milk on heated surfa- ces during ultra high-temperature processing. Journal of Dairy Research. 53 (1):75-87.
  148. Skudder, P. J., Thomas, E. L., Pavey, J. A. and Perkin, A. G. (1981). Effects of adding potassium iodate to milk before UHT treatment. I. Reduction in the amount of deposit on the heated surfaces. J. Dairy Res. 48:99-113.
  149. Thompson, J. S. and Thompson, A. (1990). In-home pasteurization of raw goat's milk by microwave treatment. Int. J. Food Microbiol. 10(1): 59-64.
  150. Tissier J, Lalande M, and Corrieu G. (1984). A study of milk deposit on a heat exchange surface during ultra-high-temperature treatment. In: McKenna B. M., editor. Engineering and Food, 1: Engineering Sciences in the Food Industry. Applied Science Publishers.
  151. Toyoda, I. and Fryer, P. J. (1997). A computational model for reaction and mass transfer in fouling from whey protein solutions. Fouling mitigation of industrial heat exchange equipment. Begell House, New York.
  152. Toyoda, I., Schreier, P. J. R. and Fryer, P. J. (1994). computational model for reaction fouling from whey protein solutions. In Proceedings of Fouling Cleaning in Food Processing (pp. 222-229). Cambridge, England.
  153. Treybal, R. E. (1981). Mass Transfer Operations (3rd ed.): McGraw-Hill Book Company.
  154. Truong, H. T. (2001). Fouling of stainless steel surfaces by heated whole milk. Doctoral Thesis. Massey University, Palmerston North, New Zealand.
  155. Usepa. (2001). United States Environmental Protection Agency. Office of Water (4606), EPA 816-F-01-011.
  156. VanAsselt, A. J., M. Vissers, M. M., Smit, F. and Jong, P. d. (2005). In-line control of fouling. In: Proceedings of Heat Exchanger Fouling and Clean- ing-Challenges and Opportunities. Engineering Conferences International. Kloster Irsee, Germany.
  157. VanOss, C. J. (1994). Interfacial forces in aqueous media. Marcel Dekker Inc., New York.
  158. VanOss, C. J., Giese, R. F., and Wu, W. (1997). On the predominant electron- donicity of polar solid surfaces. J. Adhes. 63:71-88.
  159. Verheul, M. and Roef, S. P. M. (1998a). Structure of particulate whey protein gels. Effect of NaCl concentration, pH, heating temperature, and protein concentration. J. Agric. Food Chem. 46:4909-4916.
  160. Verheul, M. and Roef, S. P. M. (1998b). Structure of whey protein gels, stud- ied by permeability, scanning electron microscopy and rheology. Food Hydrocolloid. 12:17-24.
  161. Villamiel, M., Corzo, N., Martinez-Castro, I. and Olano, A. (1996). Chemical changes during microwave treatment of milk. Food Chem. 56(4):385-388.
  162. Visser, H. (1997). Fouling and cleaning of heat treatment equipment, Brussels: IDF Monograph. In IDF Monograph (Vol. 328). Brussels, Publ IDF.
  163. Visser, J. (1999). Reducing Fouling of Heat Exchangers in the Dairy Industry by Process Optimization. Proceedings of Fouling and Cleaning in Food Proc- essing'98, Wilson, D. I., Fryer, P. J., and Hasting, A. P. M. (Eds.), publ.EU.
  164. Visser, J. and Jeurnink, T. J. M. (1997). Fouling of heat exchangers in the dairy industry. Exp. Thermal Fluid Sci. 14:407-424.
  165. Wilson, D. I., Fryer, P. J. and Hasting, A. P. M. (1999). Fouling, Cleaning and Disinfection in Food Processing. 98, pp. 287 (EUR 18804, Cambridge, Jesus College.
  166. Wilson, D. I., Fryer, P. J. and Hasting, A. P. M. (2002). Fouling, Cleaning and Disinfection in Food Processing. Cambridge, Jesus College.
  167. Wu, W. and Nancollas, G. H. (1998). Kinetics of heterogeneous nucleation of calcium phosphate on Anatase and Rutile Surfaces. J. Colloids Interf. Sci. 199:206-211.
  168. Xin, H. (2003). A study of the mechanism of chemical cleanings of milk pro- tein fouling deposits using a model material (whey protein concentrate gel), The University of Auckland, Auckland.
  169. Xin, H., Chen, X. D. and Ozkan, N. (2002a). Cleaning rate in the uniform cleaning stage for whey protein gel deposits. Food Bioproducts Proc. 80:240-246.
  170. Xin, H., Chen, X. D. and Ozkan, N. (2002b). Whey protein based gel as a model material for studying the initial cleaning mechanisms of milk fouling. J. Food Sci. 67: 2702-2711.
  171. Xiong, Y. (1992). Influence of pH and ionic environment on thermal aggre- gation of whey proteins. J. Agric. Food Chem. 40:380-384.
  172. Yoo, J. and Chen, X. D. (2002). An emission pattern of a thermophilic bacteria attached to or imbedded in porous catalyst. Int. J. Food Microbiol. 72: 11-21.
  173. Yoo, J., Hardin, M. T. and Chen, X. D. (2006). The influence of milk composi- tion on the growth of Bacillus stearothermophilus.
  174. Yoo, J., Hardin, M. T., Chen, X. D., The, bacillus, i. o. m. c. o. t. g. o., stearo- thermophilus, B. a. B., & (Accepted)., E. (2004). The influence of milk com- position on the growth of bacillus stearothermophilus. Biotechnol. Biol. Eng. (Accepted).
  175. Yoon, J. and Lund, D. B. (1989). Effect of operating conditions, surface coat- ing and pretreatment on milk fouling in aplater heat exchange. In Kessler, H. G. and Lund, D. B. (Eds.), Fouling and cleaning in food processing (Vol. 59-80). Perin, Federal Republic of Germany.
  176. Youcef, M., Abdelkader, M. and Lounes, O. (2009). A dynamic model for milk fouling in a plate heat exchanger. Appl. Math. Model. 33:648-662.
  177. Zaida, A. H., Sarma, S. C., Grover, P. D. and Heldman, D. R. (1987). Milk concentration by direct contact heat exchange. J. Food Proc. Eng. 9(1): 63-79.
  178. Zhao, Q., Liu, Y., Wang, C., Wang, S. and M€ uller-Steinhagen, H. (2005). sur- face free energy on the adhesion of biofouling and crystalline fouling. Chem. Eng. Sci. 60(17):4858-4865.