Abstract
This technique is similar to finding regression parameters of a straight line, see . This polynomial system can be solved in symbolic way via Gröbner basis and Sylvester resultant. The polynomial system can be reduced to monomials of higher order. First let us eliminate c via Gröbner basis, we get gjb 2 + acab 2 -ejab 2 ,ag + ci -bca + aea -fga + cha + efa 2 -aga 2 -bca 3 + aea 3 -
Key takeaways
AI
AI
- Robust regression techniques are crucial for handling outliers in 3D data modeling.
- M-estimation introduced by Huber in 1973 provides a framework for robust parameter estimation.
- RANSAC is effective for identifying inliers in datasets containing significant outliers.
- The Danish method adjusts weights iteratively to mitigate the influence of outliers during parameter estimation.
- Geometric fitting approaches yield better accuracy than algebraic methods in the presence of noise.
References (27)
- ListPlot[Transpose[CollectorSols][[2]], Joined ! True,Joined ! True, PlotRange ! All, AxesLabel ! { 00 Number of iterations 00 , 00 b 00 }] ListPlot[Transpose[CollectorSols][[3]], Joined ! True,Joined ! True, PlotRange ! All, AxesLabel ! { 00 Number of iterations 00 , 00 c 00 }] Show[{p5,p3,p4}]
- Now, we separate the mixture of the samples into two clusters: cluster of outliers and cluster of inliers. Membership values of the first cluster Short[D[[1]],10] {1
- 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , < < 91009 > > , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1:} Membership values of the second cluster: Short[D[[2]],10] {2:168186518114028 Â 10 -569 ,5:715327153955006 Â 10 -563 , 4:439837476761972 Â 10 -375 ,6:094575596255934 Â 10 -374 , 1:526341682623958 Â 10 -585 ,2:869284522501804 Â 10 -372 , < < 91078 > > ,9:51406 Â 10 -40 ,6:5817 Â 10 -32 , 8:02675 Â 10 -35 ,1:28721 Â 10 -30 ,1:99815 Â 10 -38 } Short[D[[1]],10] {1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,
- 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , < < 91009 > > , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:, 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,} Membership values of the second cluster: Short[D[[2]],10] {5:197294751685767 Â 10 -563 ,9:62586576863179 Â 10 -557 , 2:44052537654221 Â 10 -371 ,3:138647064118679 Â 10 -370 , 7:696701760704474 Â 10 -579 ,1:319339597606332 Â 10 -368 , < < 91077 > > ,5:26593 Â 10 -38 ,1:12943 Â 10 -38 ,4:7876 Â 10 -31 , 6:62412 Â 10 -34 ,7:8142 Â 10 -30 ,1:95385 Â 10 -37 } In order to get Boolean (crisp) clustering let us round the membership values. References
- Beder C, Förstner W (2006) Direct solutions for computing cylinders from minimal sets of 3d points, computer vision-ECCV 2006. Lect Notes Comput Sci 3951:135-146
- Carrea D, Jaboyedoff M, Derron MH (2014) Feasibility study of point cloud data from test deposition holes for deformation analysis. In: Working report 2014-01, Universite de Lausanne (UNIL)
- DalleMole V, do Rego R, Araújo A (2010) The self-organizing approach for surface reconstruction from unstructured point clouds. In: Matsopoulos GK (Ed) Self-Organizing Maps
- Draelos MT (2012) The kinect up close: modifications for short-range depth imaging. In: A thesis Master of Science, Electrical Engineering, Raleigh, North Carolina
- Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381-395
- Fox A, Smith J, Ford R, Doe J (2013) Expectation Maximization for gaussian mixture distributions. In: Wolfram Demonstration Project Franaszek M, Cheok G, Saidi KS, Witzgall C (2009) Fitting spheres to range data from 3-D imaging systems. IEEE T. Instru Meas 58(10):3544-3553
- Khameneh M (2013) Tree detection and species identification using LiDAR data. In: MSc. Thesis, KTH, Royal Institute of Technology, Stockholm
- Kohonen T (1998) The self-organizing map. Neurocomputing 21:1-6
- Krarup T, Kubik K, Juhl J (1980) Götterdammerung over least squares. In: Proceeding of international society of photogrammetry 14th Congress, Hamburg, pp 370-378
- Lichtblau D (2006) Cylinders through five points: complex and real enumerative geometry, Conference Paper August 2006, DOI:10.1007/978-3-540-77356-6_6 Source: DBLP confer- ence: automated deduction in geometry, 6th international workshop, ADG 2006, Pontevedra, Spain, August 31-September 2, 2006
- Lichtblau D (2012) Cylinders Through five points computational algebra and geometry automated deduction in geometry. J. Mathe Res 4:65-82 Published by Canadian Center of Science and Education
- Lukacs G, Martin R, Marshall D (1998) Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In: Burkhardt H, Neumann B (eds) Computer Vision - ECCV'98, vol I. LNCS 1406, Springer-Verlag, pp 671-686
- Mitra NJ, Nguyen (2003) SoCG'03, June 8-10, San Diego, California, USA, ACM 1-58113-663-3/03/0006, pp 322-328
- Molnár B, Toth CK, Detrekoi A (2012) Accuracy test of microsoft kinect for human morphological measurements. In: International archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXIX-B3, 2012 XXII ISPRS Congress, 25 August-01 September 2012, Melbourne, Australia
- Nurunnabi A, Belton D, West G. (2012) Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data. In: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, vol. I-3, 2012 XXII ISPRS Congress, 25 Aug. 2012, Melbourne, Australia, pp 269-275
- Paláncz B (2014) Fitting data with different error models. Mathe J 16:1-22
- Petitjean S (2002) A survey of methods for recovering quadrics in triangle meshes. ACM Comput Surv 34(2):211-262
- Poppinga J, Vaskevicius N, Birk A, Pathak K (2008) Fast plane detection and polygonalization in noisy 3D range images. In: International conference on intelligent robots and systems (IROS), Nice, France, IEEE Press 2008
- Rose C, Smith D (2000) Symbolic Maximum Likelihood Estimation with Mathematica. Statistician 49:229-240
- Ruiz O, Arroyave S, Acosta D (2013) Fitting Analytic Surfaces to Noisy Point Clouds. Am. J. Comput Mathe 3:18-26
- Stal C, Timothy Nuttens T, Constales D, Schotte K, De Backer H, De Wulf A (2012) Automatic filtering of terrestrial laser scanner data from cylindrical tunnels, TS09D-Laser Scanners III, 5812. In: FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy, May 2012, pp 6-10
- Stathas D, Arabatzi O, Dogouris S, Piniotis G, Tsini D, Tsinis D (2003) New monitoring techniques on the determination of structure deformation. In: Proceedings 11th international fig symposium on deformation measurements, Santorini, Greece
- Su YT, Bethel J (2010) Detection and robust estimation of cylinder features in point clouds. In: ASPRS 2010 annual conference, San Diego, California April 26-30