Academia.eduAcademia.edu

Outline

Robust Regression

2018, Mathematical Geosciences

https://doi.org/10.1007/978-3-319-67371-4_13

Abstract

This technique is similar to finding regression parameters of a straight line, see . This polynomial system can be solved in symbolic way via Gröbner basis and Sylvester resultant. The polynomial system can be reduced to monomials of higher order. First let us eliminate c via Gröbner basis, we get gjb 2 + acab 2 -ejab 2 ,ag + ci -bca + aea -fga + cha + efa 2 -aga 2 -bca 3 + aea 3 -

Key takeaways
sparkles

AI

  1. Robust regression techniques are crucial for handling outliers in 3D data modeling.
  2. M-estimation introduced by Huber in 1973 provides a framework for robust parameter estimation.
  3. RANSAC is effective for identifying inliers in datasets containing significant outliers.
  4. The Danish method adjusts weights iteratively to mitigate the influence of outliers during parameter estimation.
  5. Geometric fitting approaches yield better accuracy than algebraic methods in the presence of noise.

References (27)

  1. ListPlot[Transpose[CollectorSols][[2]], Joined ! True,Joined ! True, PlotRange ! All, AxesLabel ! { 00 Number of iterations 00 , 00 b 00 }] ListPlot[Transpose[CollectorSols][[3]], Joined ! True,Joined ! True, PlotRange ! All, AxesLabel ! { 00 Number of iterations 00 , 00 c 00 }] Show[{p5,p3,p4}]
  2. Now, we separate the mixture of the samples into two clusters: cluster of outliers and cluster of inliers. Membership values of the first cluster Short[D[[1]],10] {1
  3. 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , < < 91009 > > , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1:} Membership values of the second cluster: Short[D[[2]],10] {2:168186518114028 Â 10 -569 ,5:715327153955006 Â 10 -563 , 4:439837476761972 Â 10 -375 ,6:094575596255934 Â 10 -374 , 1:526341682623958 Â 10 -585 ,2:869284522501804 Â 10 -372 , < < 91078 > > ,9:51406 Â 10 -40 ,6:5817 Â 10 -32 , 8:02675 Â 10 -35 ,1:28721 Â 10 -30 ,1:99815 Â 10 -38 } Short[D[[1]],10] {1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,
  4. 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , < < 91009 > > , 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: , 1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:,1:, 1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,} Membership values of the second cluster: Short[D[[2]],10] {5:197294751685767 Â 10 -563 ,9:62586576863179 Â 10 -557 , 2:44052537654221 Â 10 -371 ,3:138647064118679 Â 10 -370 , 7:696701760704474 Â 10 -579 ,1:319339597606332 Â 10 -368 , < < 91077 > > ,5:26593 Â 10 -38 ,1:12943 Â 10 -38 ,4:7876 Â 10 -31 , 6:62412 Â 10 -34 ,7:8142 Â 10 -30 ,1:95385 Â 10 -37 } In order to get Boolean (crisp) clustering let us round the membership values. References
  5. Beder C, Förstner W (2006) Direct solutions for computing cylinders from minimal sets of 3d points, computer vision-ECCV 2006. Lect Notes Comput Sci 3951:135-146
  6. Carrea D, Jaboyedoff M, Derron MH (2014) Feasibility study of point cloud data from test deposition holes for deformation analysis. In: Working report 2014-01, Universite de Lausanne (UNIL)
  7. DalleMole V, do Rego R, Araújo A (2010) The self-organizing approach for surface reconstruction from unstructured point clouds. In: Matsopoulos GK (Ed) Self-Organizing Maps
  8. Draelos MT (2012) The kinect up close: modifications for short-range depth imaging. In: A thesis Master of Science, Electrical Engineering, Raleigh, North Carolina
  9. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381-395
  10. Fox A, Smith J, Ford R, Doe J (2013) Expectation Maximization for gaussian mixture distributions. In: Wolfram Demonstration Project Franaszek M, Cheok G, Saidi KS, Witzgall C (2009) Fitting spheres to range data from 3-D imaging systems. IEEE T. Instru Meas 58(10):3544-3553
  11. Khameneh M (2013) Tree detection and species identification using LiDAR data. In: MSc. Thesis, KTH, Royal Institute of Technology, Stockholm
  12. Kohonen T (1998) The self-organizing map. Neurocomputing 21:1-6
  13. Krarup T, Kubik K, Juhl J (1980) Götterdammerung over least squares. In: Proceeding of international society of photogrammetry 14th Congress, Hamburg, pp 370-378
  14. Lichtblau D (2006) Cylinders through five points: complex and real enumerative geometry, Conference Paper August 2006, DOI:10.1007/978-3-540-77356-6_6 Source: DBLP confer- ence: automated deduction in geometry, 6th international workshop, ADG 2006, Pontevedra, Spain, August 31-September 2, 2006
  15. Lichtblau D (2012) Cylinders Through five points computational algebra and geometry automated deduction in geometry. J. Mathe Res 4:65-82 Published by Canadian Center of Science and Education
  16. Lukacs G, Martin R, Marshall D (1998) Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In: Burkhardt H, Neumann B (eds) Computer Vision - ECCV'98, vol I. LNCS 1406, Springer-Verlag, pp 671-686
  17. Mitra NJ, Nguyen (2003) SoCG'03, June 8-10, San Diego, California, USA, ACM 1-58113-663-3/03/0006, pp 322-328
  18. Molnár B, Toth CK, Detrekoi A (2012) Accuracy test of microsoft kinect for human morphological measurements. In: International archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXIX-B3, 2012 XXII ISPRS Congress, 25 August-01 September 2012, Melbourne, Australia
  19. Nurunnabi A, Belton D, West G. (2012) Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data. In: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, vol. I-3, 2012 XXII ISPRS Congress, 25 Aug. 2012, Melbourne, Australia, pp 269-275
  20. Paláncz B (2014) Fitting data with different error models. Mathe J 16:1-22
  21. Petitjean S (2002) A survey of methods for recovering quadrics in triangle meshes. ACM Comput Surv 34(2):211-262
  22. Poppinga J, Vaskevicius N, Birk A, Pathak K (2008) Fast plane detection and polygonalization in noisy 3D range images. In: International conference on intelligent robots and systems (IROS), Nice, France, IEEE Press 2008
  23. Rose C, Smith D (2000) Symbolic Maximum Likelihood Estimation with Mathematica. Statistician 49:229-240
  24. Ruiz O, Arroyave S, Acosta D (2013) Fitting Analytic Surfaces to Noisy Point Clouds. Am. J. Comput Mathe 3:18-26
  25. Stal C, Timothy Nuttens T, Constales D, Schotte K, De Backer H, De Wulf A (2012) Automatic filtering of terrestrial laser scanner data from cylindrical tunnels, TS09D-Laser Scanners III, 5812. In: FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy, May 2012, pp 6-10
  26. Stathas D, Arabatzi O, Dogouris S, Piniotis G, Tsini D, Tsinis D (2003) New monitoring techniques on the determination of structure deformation. In: Proceedings 11th international fig symposium on deformation measurements, Santorini, Greece
  27. Su YT, Bethel J (2010) Detection and robust estimation of cylinder features in point clouds. In: ASPRS 2010 annual conference, San Diego, California April 26-30