Candidate quantum spin ice in the pyrochlorePr2Hf2O7
2016, Physical Review B
https://doi.org/10.1103/PHYSREVB.94.024436Abstract
We report the low temperature magnetic properties of the pyrochlore Pr 2 Hf 2 O 7 . Polycrystalline and singlecrystal samples are investigated using time-of-flight neutron spectroscopy and macroscopic measurements, respectively. The crystal-field splitting produces a non-Kramers doublet ground state for Pr 3+ , with Ising-like anisotropy. Below 0.5 K ferromagnetic correlations develop, which suggests that the system enters a spin-ice-like state associated with the metamagnetic behavior observed at μ 0 H c ∼ 2.4 T. In this regime, the development of a discrete inelastic excitation in the neutron spectra indicates the appearance of spin dynamics that are likely related to cooperative quantum fluctuations.
References (59)
- L. Balents, Nature (London) 464, 199 (2010).
- B. Normand, Contemp. Phys. 50, 533 (2009).
- S. V. Isakov, M. B. Hastings, and R. G. Melko, Nat. Phys. 7, 772 (2011).
- X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
- M. J. P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77, 056501 (2014).
- R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 105, 166401 (2010).
- J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).
- S. T. Bramwell and M. J. P. Gingras, Science 294, 1495 (2001).
- S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko, and T. Fennell, Phys. Rev. Lett. 87, 047205 (2001).
- C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London) 451, 42 (2008).
- T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, and S. T. Bramwell, Science 326, 415 (2009).
- C. L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010).
- C. Castelnovo, R. Moessner, and S. L. Sondhi, Annu. Rev. Condens. Matter Phys. 3, 35 (2012).
- S. H. Curnoe, Phys. Rev. B 78, 094418 (2008).
- K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011).
- M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).
- L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202 (2012).
- O. Benton, O. Sikora, and N. Shannon, Phys. Rev. B 86, 075154 (2012).
- L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Nat. Commun. 3, 992 (2012).
- R. Applegate, N. R. Hayre, R. R. P. Singh, T. Lin, A. G. R. Day, and M. J. P. Gingras, Phys. Rev. Lett. 109, 097205 (2012).
- J. Robert, E. Lhotel, G. Remenyi, S. Sahling, I. Mirebeau, C. Decorse, B. Canals, and S. Petit, Phys. Rev. B 92, 064425 (2015).
- L. D. C. Jaubert, O. Benton, J. G. Rau, J. Oitmaa, R. R. P. Singh, N. Shannon, and M. J. P. Gingras, Phys. Rev. Lett. 115, 267208 (2015).
- H. D. Zhou, C. R. Wiebe, J. A. Janik, L. Balicas, Y. J. Yo, Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys. Rev. Lett. 101, 227204 (2008).
- K. Matsuhira, C. Sekine, C. Paulsen, M. Wakeshima, Y. Hinatsu, T. Kitazawa, Y. Kiuchi, Z. Hiroi, and S. Takagi, J. Phys.: Conf. Ser. 145, 012031 (2009).
- S. Onoda and Y. Tanaka, Phys. Rev. Lett. 105, 047201 (2010).
- S. B. Lee, S. Onoda, and L. Balents, Phys. Rev. B 86, 104412 (2012).
- K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M. B. Stone, E. Nishibori, and H. Sawa, Nat. Commun. 4, 1934 (2013).
- R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fennell, and M. Kenzelmann, Phys. Rev. Lett. 115, 097202 (2015).
- H. A. Craig, Explorations: An Undergraduate Research Journal 23 (2009).
- V. K. Anand, A. K. Bera, J. Xu, T. Herrmannsdörfer, C. Ritter, and B. Lake, Phys. Rev. B 92, 184418 (2015).
- M. Ciomaga Hatnean, R. Sibille, M. R. Lees, M. Kenzelmann, V. Ban, V. Pomjakushin, and G. Balakrishnan (unpublished).
- A. V. Shevchenko, L. M. Lopato, and Z. A. Zaitseva, Inorg. Mater. 20, 1316 (1984).
- C. Karthik, T. J. Anderson, D. Gout, and R. Ubic, J. Solid State Chem. 194, 168 (2012).
- P. E. R. Blanchard, S. Liu, B. J. Kennedy, C. D. Ling, M. Avdeev, J. B. Aitken, B. C. C. Cowie, and A. Tadich, J. Phys. Chem. C 117, 2266 (2013).
- C. Paulsen, in Introduction to Physical Techniques in Molecular Magnetism: Structural and Macroscopic Techniques -Yesa 1999, edited by F. Palacio, E. Ressouche, and J. Schweizer (Servicio de Publicaciones de la Universidad de Zaragoza, Zaragoza, 2001), p. 1.
- A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
- A. J. Princep, D. Prabhakaran, A. T. Boothroyd, and D. T. Adroja, Phys. Rev. B 88, 104421 (2013).
- In the absence of the crystal-field interaction the intermediate coupling basis states of Pr 3+ are dominated by the Hund's rule ground state 3 H 4 , with a small admixture of 3 F 4 and 1 G 4 . See Refs. [37,39].
- A. T. Boothroyd, S. M. Doyle, D. M. Paul, and R. Osborn, Phys. Rev. B 45, 10075 (1992).
- G. F. Koster, J. Dimmock, R. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, MA, 1963).
- In Koster's notation [40], the irreducible representations (irreps) i are usually labeled such that the low-symmetry irreps have small i indices. The '+' symbol appearing as a superscript to the index in + i indicates that the irrep is symmetric with respect to the inversion.
- B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).
- A. T. Boothroyd, SPECTRE, A Program for Calculating Spectroscopic Properties of Rare Earth Ions in Crystals (1990-2016).
- S. Onoda and Y. Tanaka, Phys. Rev. B 83, 094411 (2011).
- S. T. Bramwell and M. J. Harris, J. Phys.: Condens. Matter 10, L215 (1998).
- K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, and T. Sakakibara, J. Phys.: Condens. Matter 14, L559 (2002).
- H. R. Molavian and M. J. P. Gingras, J. Phys.: Condens. Matter 21, 172201 (2009).
- Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Nature (London) 463, 210 (2010).
- K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, and T. Sakakibara, J. Phys. Soc. Jpn. 71, 1576 (2002).
- J. Snyder, B. G. Ueland, J. S. Slusky, H. Karunadasa, R. J. Cava, and P. Schiffer, Phys. Rev. B 69, 064414 (2004).
- K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, and S. Takagi, J. Phys. Soc. Jpn. 80, 123711 (2011).
- J. A. Quilliam, L. R. Yaraskavitch, H. A. Dabkowska, B. D. Gaulin, and J. B. Kycia, Phys. Rev. B 83, 094424 (2011).
- L. D. C. Jaubert and P. C. W. Holdsworth, J. Phys.: Condens. Matter 23, 164222 (2011).
- T. Fennell, M. Kenzelmann, B. Roessli, M. K. Haas, and R. J. Cava, Phys. Rev. Lett. 109, 017201 (2012).
- E. Lhotel, C. Paulsen, P. D. de Réotier, A. Yaouanc, C. Marin, and S. Vanishri, Phys. Rev. B 86, 020410 (2012).
- H. Takatsu, H. Kadowaki, T. J. Sato, J. W. Lynn, Y. Tabata, T. Yamazaki, and K. Matsuhira, J. Phys.: Condens. Matter 24, 052201 (2012).
- G. Ehlers, A. L. Cornelius, M. Orendc, M. Kajnakov, T. Fennell, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 15, L9 (2003).
- M. Ruminy, Thesis, Swiss Federal Institute of Technology in Zurich (ETHZ) 2015.
- Heat capacity measurements providing proof for a vanishing spin entropy at the temperatures where the persistent fluctuations are observed using neutron spectroscopy would be necessary to claim the quantum origin of the fluctuations.