Academia.eduAcademia.edu

Outline

Measurement errors in visual servoing

2004

https://doi.org/10.1109/ROBOT.2004.1308095

Abstract

This paper addresses the issue of measurement errors in visual servoing. The error characteristics of the vision based state estimation and the associated uncertainty of the control are investigated. The major contribution is the analysis of the propagation of image error through pose estimation and visual servoing control law. Using the analysis, two classical visual servoing methods are evaluated: position-based and 2 1/2 D visual servoing. The evaluation offers a tool to build and analyze hybrid control systems such as switching or partitioning control.

References (22)

  1. S. Hutchinson, G. D. Hager, P. I. Corke, A tutorial on visual servo control, IEEE Transactions on Robotics and Automation 12 (5) (1996) 651-670.
  2. D. Kragic, H. Christensen, Survey on Visual Servoing for Manipulation, Tech. Rep. ISRN KTH/NA/P-02/01-SE, January 2002, CVAP259.
  3. B. Espiau, Effect of camera calibration errors on visual servoing in robotics, in: 3rd International Symposium on Experimental Robotics, Kyoto, Japan, 1993, pp. 182-192.
  4. F. Chaumette, Potential problems of stability and convergence in image-based and position-based visual servoing, in: The Confluence of Vision and Control, no. 237 in Lecture Notes in Control and Information Sciences, Springer-Verlag, 1998, pp. 66-78.
  5. E. Malis, F. Chaumette, Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods, IEEE Transactions on Robotics and Automation 18 (2) (2002) 176-186.
  6. E. Malis, F. Chaumette, S. Boudet, 2-1/2-D visual servoing, IEEE Transactions on Robotics and Automation 15 (2) (1999) 238-250.
  7. V. Kyrki, D. Kragic, H. I. Christensen, Measurement errors in visual servoing, in: IEEE International Conference on Robotics and Automation, Vol. 2, New Orleans, LA, USA, 2004, pp. 1861-1867.
  8. M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography, Communications of ACM 24 (6) (1981) 381-395.
  9. L. Quan, Z. Lan, Linear n-point camera pose determination, IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (8) (1999) 774-780.
  10. P. D. Fiore, Efficient linear solution of exterior orientation, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2) (2001) 140-148.
  11. A. Ansar, K. Daniilidis, Linear pose estimation from points or lines, IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (5) (2003) 578- 589.
  12. B. K. P. Horn, Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical Society of America 4 (4) (1987) 629-642.
  13. J. Weng, T. S. Huang, N. Ahuja, Motion and structure from two perspective views: Algorithms, error analysis, and error estimation, IEEE Transaction on Pattern Analysis and Machine Intelligence 11 (5) (1989) 451-476.
  14. R. M. Haralick, H. Joo, C.-N. Lee, X. Zhuang, V. G. Vaidya, M. B. Kim, Pose estimation from corresponding point data, IEEE Transactions on Systems, Man, and Cybernetics 19 (6) (1989) 1426-1446.
  15. L. Deng, W. J. Wilson, F. Janabi-Sharifi, Characteristics of robot visual servoing methods and target model estimation, in: Proceedings of the 2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada, 2002, pp. 684-689.
  16. A. Comport, M. Pressigout, E. Marchand, F. Chaumette, A visual servoing control law that is robust to image outliers, in: Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003, pp. 492-497.
  17. D. Kragic, H. I. Christensen, Cue integration for visual servoing, IEEE Transactions on Robotics and Automation 17 (1) (2001) 18-27.
  18. N. R. Gans, S. A. Hutchinson, An asymptotically stable switched system visual controller for eye in hand robots, in: Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003, pp. 735-742.
  19. D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 60 (2) (2004) 91-110.
  20. R. M. Haralick, Propagating covariance in computer vision, International Journal of Pattern Recognition and Artificial Intelligence 10 (5).
  21. N. Mansard, F. Chaumette, Tasks sequencing for visual servoing, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Sendai, Japan, 2004, pp. 992-997.
  22. E. Malis, P. Rives, Robustness of image-based visual servoing with respect to depth distribution errors, in: IEEE International Conference on Robotics and Automation, 2003, pp. 1056-1061.