Academia.eduAcademia.edu

Outline

Multi-objective vehicle routing with automated negotiation

Applied Intelligence

https://doi.org/10.1007/S10489-022-03329-2

Abstract

This paper investigates a problem that lies at the intersection of three research areas, namely automated negotiation, vehicle routing, and multi-objective optimization. Specifically, it investigates the scenario that multiple competing logistics companies aim to cooperate by delivering truck loads for one another, in order to improve efficiency and reduce the distance they drive. In order to do so, these companies need to find ways to exchange their truck loads such that each of them individually benefits. We present a new heuristic algorithm that, given one set of orders for each company, tries to find the set of all truck load exchanges that are Pareto-optimal and individually rational. Unlike existing approaches, it does this without relying on any kind of trusted central server, so the companies do not need to disclose their private cost models to anyone. The idea is that the companies can then use automated negotiation techniques to negotiate which of these truck load exchange...

References (44)

  1. Ferrell W, Ellis K, Kaminsky P, Rainwater C (2020) Horizontal collaboration: opportunities for improved logistics planning. Int J Prod Res 58(14):4267-4284. https://doi.org/10.1080/00207543. 2019.1651457
  2. de Jonge D, Bistaffa F, Levy J (2021) A heuristic algorithm for multi-agent vehicle routing with automated negotiation. In: Proceedings of the 20th international conference on autonomous agents and multiagent systems (AAMAS 2021). International Foundation for Autonomous Agents and Multiagent Systems
  3. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80-91
  4. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568-581
  5. Desrochers M, Lenstra JK, Savelsbergh MWP (1990) A classifi- cation scheme for vehicle routing and scheduling problems. Eur J Oper Res 46(3):322-332
  6. Toth P, Vigo D (2002) The vehicle routing problem, SIAM monographs on discrete mathematics and applications, vol 9. SIAM. https://doi.org/10.1137/1.9780898718515
  7. Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The vehicle routing problem: state of the art classification and review. Comput Ind Eng 99:300-313. https://doi.org/10.1016/j.cie.2015. 12.007
  8. Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017) New benchmark instances for the capacitated vehicle routing problem. Eur J Oper Res 257(3):845-858. https://doi.org/ 10.1016/j.ejor.2016.08.012, https://www.sciencedirect.com/ science/article/pii/S0377221716306270
  9. Savelsbergh MWP, Sol M (1995) The general pickup and delivery problem. Transp Sci 29(1):17-29
  10. Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery problem with time windows. Eur J Oper Res 54(1):7-22
  11. Dixit A, Mishra A, Shukla A (2019) Vehicle routing problem with time windows using meta-heuristic algorithms: a survey. In: Yadav N, Yadav A, Bansal JC, Deep K, Kim JH (eds) harmony search and nature inspired optimization algorithms. Springer Singapore, Singapore, pp 539-546
  12. Gansterer M, Hartl RF (2018) Collaborative vehicle routing: a survey. Eur J Oper Res 268(1):1-12
  13. Wang X, Kopfer H (2014) Collaborative transportation planning of less-than-truckload freight. OR Spectrum 36(2):357-380
  14. Wang X, Kopfer H (2015) Rolling horizon planning for a dynamic collaborative routing problem with full-truckload pickup and delivery requests. Flex Serv Manuf J 27(4):509-533
  15. Wang X, Kopfer H, Gendreau M (2014) Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur J Oper Res 237(3):1133-1141
  16. Dahl S, Derigs U (2011) Cooperative planning in express carrier networks -an empirical study on the effectiveness of a real-time decision support system. Decis Support Syst 51(3): 620-626. https://doi.org/10.1016/j.dss.2011.02.018, http://www. sciencedirect.com/science/article/pii/S0167923611000947
  17. Jozefowiez N, Semet F, Talbi E-G (2008) Multi-objective vehicle routing problems. Eur J Oper Res 189(2):293-309
  18. Ombuki BM, Ross B, Hanshar F (2006) Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl Intell 24(1):17-30. https://doi.org/10.1007/s10489-006-6926-z
  19. van der Putten S, Robu V, La Poutré H, Jorritsma A, Gal M (2006) Automating supply chain negotiations using autonomous agents: A case study in transportation logistics. In: Proceedings of the fifth international joint conference on autonomous agents and multiagent systems, AAMAS '06. ACM, New York, pp 1506- 1513. https://doi.org/10.1145/1160633.1160926
  20. Robu V, Noot H, La Poutré H, van Schijndel W-J (April 2011) A multi-agent platform for auction-based allocation of loads in transportation logistics. Expert Syst Appl 38(4):3483-3491. https://doi.org/10.1016/j.eswa.2010.08.136
  21. de Jonge D, Sierra C (2012) Automated negotiation for package delivery. In: Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012 IEEE sixth international conference on, pp 83-88
  22. de Jonge D, Sierra C (2015) NB3: a multilateral negoti- ation algorithm for large, non-linear agreement spaces with limited time. Auton Agent Multi-Agent Syst 29(5):896-942. https://doi.org/10.1007/s10458-014-9271-3
  23. Faratin P, Sierra C, Jennings NR (1998) Negotiation decision functions for autonomous agents. Robot Auton Syst 24(3-4):159- 182. https://doi.org/10.1016/S0921-8890(98)00029-3, http:// www.sciencedirect.com/science/article/pii/S0921889098000293, Multi-Agent Rationality
  24. Rosenschein JS, Zlotkin G (1994) Rules of encounter. The MIT Press, Cambridge
  25. Baarslag T, Hindriks KV, Jonker CM, Kraus S, Lin R (2012) The first automated negotiating agents competition (ANAC 2010). In: new trends in agent-based complex automated negotiations, studies in computational intelligence, vol 383. Springer, pp 113- 135. https://doi.org/10.1007/978-3-642-24696-8 7
  26. Fujita K, Aydogan R, Baarslag T, Ito T, Jonker CM (2014) The fifth automated negotiating agents competition (ANAC 2014). In: Recent advances in agent-based complex automated negotiation [revised and extended papers from the 7th international work- shop on Agent-based Complex Automated Negotiation, ACAN 2014, Paris, France, May 2014], studies in computational intel- ligence, vol 638. Springer, pp 211-224. https://doi.org/10.1007/ 978-3-319-30307-9 13
  27. Fujita K, Aydogan R, Baarslag T, Hindriks K, Ito T, Jonker C (2017) The sixth automated negotiating agents competition (anac 2015). In: Modern approaches to agent-based complex automated negotiation. Springer, pp 139-151
  28. Aydogan R, Baarslag T, Fujita K, Mell J, Gratch J, de Jonge D, Mohammad Y, Nakadai S, Morinaga S, Osawa H, Aranha C, Jonker CM (2020) Challenges and main results of the automated negotiating agents competition (anac) 2019. In: Bassiliades N, Chalkiadakis G, de Jonge D (eds) multi-agent systems and agreement technologies. Springer International Publishing, Cham, pp 366-381
  29. Mell J, Gratch J, Baarslag T, Aydogan R, Jonker CM (2018) Results of the first annual human-agent league of the automated negotiating agents competition. In: Proceedings of the 18th international conference on Intelligent Virtual Agents, IVA 2018, Sydney, NSW, Australia, November 05-08, 2018. ACM, pp 23- 28. https://doi.org/10.1145/3267851.3267907
  30. de Jonge D, Baarslag T, Aydogan R, Jonker C, Fujita K, Ito T (2019) The challenge of negotiation in the game of diplomacy. In: Lujak M (ed) agreement technologies, 6th international conference, AT 2018, Bergen, Norway, December 6-7, 2018, revised selected papers, lecture notes in computer science, vol 11327. Springer International Publishing, Cham, pp 100-114
  31. Baarslag T, Aydogan R, Hindriks KV, Fuijita K, Ito T, Jonker CM (2015) The automated negotiating agents competition, 2010- 2015. AI Mag 36(4):115-118. http://www.aaai.org/ojs/index.php/ aimagazine/article/view/2609
  32. de Jonge D, Zhang D (2020) Strategic negotiations for extensive-form games. Auton Agent Multi-Agent Syst 34(1). https://doi.org/10.1007/s10458-019-09424-y
  33. de Jonge D, Sierra C (2017) D-Brane: a diplomacy playing agent for automated negotiations research. Appl Intell 47(1):158-177. https://doi.org/10.1007/s10489-017-0919-y
  34. Ito T, Klein M, Hattori H (2008) A multi-issue negotiation protocol among agents with nonlinear utility functions. Multiagent Grid Syst 4:67-83. http://dl.acm.org/citation.cfm?id=1378675. 1378678
  35. de Jonge D, Sierra C (2016) GANGSTER: an automated negotiator applying genetic algorithms. In: Fukuta N, Ito T, Zhang M, Fujita K, Robu V (eds) recent advances in agent-based complex automated negotiation, studies in computational intelligence. Springer International Publishing, pp 225-234. http://www.iiia. csic.es/davedejonge/homepage/files/articles/Gangster.pdf
  36. Li H, Lim A (2003) A metaheuristic for the pickup and delivery problem with time windows. Int J Artif Intell Tools 12(02):173- 186
  37. Perron L, Furnon V (2019) Google or-tools v7.4. https:// developers.google.com/optimization/
  38. Marinescu R, Dechter R (2009) AND/OR branch-and-bound search for combinatorial optimization in graphical mod- els. Artif Intell 173(16-17):1457-1491. https://doi.org/10.1016/j. artint.2009.07.003
  39. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective meta- heuristics for discrete optimization problems: a review of the state-of-the-art. Appl Soft Comput 93:106382. https://doi.org/10. 1016/j.asoc.2020.106382, https://www.sciencedirect.com/ science/article/pii/S1568494620303227
  40. Lin R, Kraus S, Baarslag T, Tykhonov D, Hindriks K, Jonker CM (2014) Genius: An integrated environment for supporting the design of generic automated negotiators. Comput Intell 30(1):48- 70. https://doi.org/10.1111/j.1467-8640.2012.00463.x
  41. Aydogan R, Fujita K, Baarslag T, Jonker CM, Ito T (2019) ANAC 2018: Repeated multilateral negotiation league. In: Ohsawa Y, Yada K, Ito T, Takama Y, Sato-Shimokawara E, Abe A, Mori J, Matsumura N (eds) advances in artificial intelligence - selected papers from the annual conference of Japanese Society of Artificial Intelligence (JSAI 2019), Niigata, Japan, 4-7 June 2019, Advances in Intelligent Systems and Computing, vol 1128. Springer, pp 77-89. https://doi.org/10.1007/978-3-030-39878-1 8
  42. Palhazi Cuervo D, Vanovermeire C, Sörensen K (2016) Deter- mining collaborative profits in coalitions formed by two partners with varying characteristics. Transp Res Part C: Emerging Tech- nol 70:171-184. https://doi.org/10.1016/j.trc.2015.12.011, https:// www.sciencedirect.com/science/article/pii/S0968090X15004271
  43. Farinelli A, Bicego M, Bistaffa F, Ramchurn SD (2017) A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees. Eng Appl Artif Intell 59:170-185. https://doi.org/10.1016/j.engappai.2016.12.018
  44. Baarslag T, Hindriks K, Hendrikx M, Dirkzwager A, Jonker C (2014) Decoupling negotiating agents to explore the space of negotiation strategies. In: Marsa-Maestre I, Lopez-Carmona MA, Ito T, Zhang M, Bai Q, Fujita K (eds) Novel Insights in Agent- based Complex Automated Negotiation. Springer Japan, Tokyo, pp 61-83