Edge flow in inhomogeneous canopy
2015, HAL (Le Centre pour la Communication Scientifique Directe)
Sign up for access to the world's latest research
Abstract
AI
AI
This research investigates edge flow dynamics within an inhomogeneous canopy using a large eddy simulation (LES) model modified for canopy flow, particularly implementing a 1.5-order subgrid-scale (SGS) model. The study highlights the significance of dispersive fluxes under varying spatial and temporal conditions, emphasizing flow averaging frameworks. The findings aim to contribute to the understanding of microclimatic interactions in vegetation canopies.
Related papers
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ε turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this twodimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy;
Bulletin of the American Physical Society, 2015
A simple and complete two-interface model for spatially developing flow in rigid and flexible canopies SAMANEH SADRI, PAOLO LUZZATTO-FEGIZ, UC Santa Barbara -At the front of a canopy, flow deceleration is associated with strong vertical fluxes of mass and momentum. Accurately describing this region is important in many applications, including terrestrial and aquatic vegetation, as well as large wind farms. Simple models can provide a framework to analyze these flows, thereby guiding and complementing more refined and computationally intensive tools. Jerram et al. (2003) introduced a linearised model that describes the flow field through sparse canopies, albeit at the cost of solving a PDE. A simpler approach involves vertically integrating the governing equations across the canopy, yielding scalings that relate key variables (e.g. Chen & Nepf 2013), which in turn can be used to construct empirical fits. We build a simple and complete model, by separating the flow in three horizontal layers. These comprise the canopy, the overlying boundary layer, and the outer flow, such that exchanges of mass and momentum occur at two interfaces. We parameterize turbulent exchanges by means of the entrainment hypothesis; this is a closure that has been used extensively in other problems in geophysical fluid dynamics. We neglect pressure gradients inside the canopy, but account for upstream pressure variations and retain nonlinear terms. Our two-interface model quantitatively describes the flow velocities and boundary layer heights in developing canopy flows, and successfully accounts for the effect of ambient stratification. Finally, we discuss developments accounting for the effects of flexibility in vegetation canopies.
Boundary-layer Meteorology, 2004
The predictive skills of single and two equation (or ε − K ) models to compute profiles of mean velocity (U), turbulent kinetic energy (K), and Reynolds stresses ( w u ′ ′ )
Theoretical and Applied Climatology, 2012
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.
Agricultural and Forest Meteorology, 2008
Journal of Fluid Mechanics, 2008
This paper theoretically and experimentally investigates the exchange flow due to temperature differences between open water and a canopy of aquatic plants. A numerical model is used to study the interfacial shape, frontal velocity and total volumetric exchange, and their dependence on a dimensionless vegetation drag parameter. The numerical predictions are consistent with the laboratory measurements. There is a short initial period in which the force balance is between buoyancy and inertia, followed by drag-dominated flow for which there is a balance between buoyancy and drag forces. After the initial stage, the gravity current propagating into the canopy takes a triangular shape whereas the current propagating into the open water has almost the classic unobstructed horizontal profile, but with a slowly decreasing depth. Near the edge of the canopy, but in the open region, the flow is found to be critical with a unit internal Froude number. The exchange flow rate and the front speed in the canopy decrease slowly with time whereas the gravity current in the open water has a constant speed. The magnitude of the exchange flow decreases as the canopy drag increases. Empirical equations for the flow properties are presented. A movie is available with the online version of the paper.
Journal of the Atmospheric Sciences, 2009
Tall vegetation and complex terrain create difficult conditions for measuring and modeling net ecosystematmosphere exchanges of carbon, water vapor, and pollutants. The instability of canopy flow regimes over complex terrain is critical for understanding what factors are essential to control exchanges between different canopy flow regimes. In this paper, an analytical criterion of instability of the terrain-induced canopy flows is derived from the simplified thermal-hydromechanical equations by nonlinear instability analysis. The stability of the terrain-induced canopy flows and an oscillation solution are predicted based on the instability criterion. It is found that the critical values of control parameters are determined by the terrain slope, drag coefficient, and leaf area density of vegetation.
Boundary-layer Meteorology, 2004
The canonical form of atmospheric flows near theland surface, in the absence of a canopy, resembles a rough-wallboundary layer. However, in the presence of an extensive and densecanopy, the flow within and just above the foliage behaves as aperturbed mixing layer. To date, no analogous formulation existsfor intermediate canopy densities. Using detailed laser Dopplervelocity measurements conducted in an open channel over a widerange of canopy densities, a phenomenological model that describesthe structure of turbulence within the canopy sublayer (CSL) isdeveloped. The model decomposes the space within the CSL intothree distinct zones: the deep zone in which the flow field isshown to be dominated by vortices connected with vonKármán vortex streets, butperiodically interrupted by strong sweep events whose features areinfluenced by canopy density. The second zone, which is near thecanopy top, is a superposition of attached eddies andKelvin–Helmholtz waves produced by inflectional instability in themean longitudinal velocity profile. Here, the relative importanceof the mixing layer and attached eddies are shown to vary withcanopy density through a coefficient α. We show that therelative enhancement of turbulent diffusivity over its surface-layer value near the canopy top depends on the magnitude ofα. In the uppermost zone, the flow follows the classicalsurface-layer similarity theory. Finally, we demonstrate that thecombination of this newly proposed length scale and first-orderclosure models can accurately reproduce measured mean velocity andReynolds stresses for a wide range of roughness densities. Withrecent advancement in remote sensing of canopy morphology, thismodel offers a promising physically based approach to connect theland surface and the atmosphere without resorting to empiricalmomentum roughness lengths.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.