Academia.eduAcademia.edu

Outline

CRISPR IB

https://doi.org/10.33899/IJVS.2023.140335.3040

Abstract

Infectious bronchitis is an acute respiratory disease of poultry associated with reduced egg production and heavy economic losses in chicken flocks. Rabid and accurate detection of IB virus (IBV) is essential for controlling and preventing the infection. In this study, we developed a rapid, accurate, and instrument less assay to detect IBV. For the first time, reverse transcription-Recombinase polymerase amplification (RT-RPA) coupled with CRISPR/Cas13 (SHERLOCK) was used to rapidly visualize IBV. The novel assay was tested in timing, sensitivity, and specificity. The spike gene (S gene) was used as a target gene for detecting the virus. Three samples were used to optimize the assay; sample form confirmed infected chickens with IB, positive sample (full synthesis of S gene), and negative sample from free IB infected chickens. The results show that the Sherlock-based Cas13 platform is a highly specificity and sensitivity assay for detecting infectious bronchitis virus. The assay detected ten copies per µL of the input RNA. No false positives or cross-reactions were seen when bovine coronavirus (BCV) was used instead of IBV in the tested sample. Readout of the results needs just fifty minutes, including RNA extraction. Furthermore, No instrument was used, and amplification of the virus's nucleic acid was performed at room temperature. Sherlock-based Cas13 should clinically use for rapid diagnosis of infectious bronchitis in chickens. However, further studies and experiments are needed to perform the assay at the sample base without extraction of RNA.

References (41)

  1. Egaña-Labrin S, Hauck R, Figueroa A, Stoute S, Shivaprasad HL, Crispo M, Corsiglia C, Zhou H, Kern C, Crossley B, Gallardo RA. Genotypic characterization of emerging avian reovirus genetic variants in California. Sci Rep. 2019;9(1):9351. DOI: 10.1038/s41598-019- 45494-4
  2. Liu IL, Lin YC, Lin YC, Jian CZ, Cheng IC, Chen HW. A novel immunochromatographic strip for antigen detection of avian infectious bronchitis virus. Int J Mol Sci. 2019;20(9):2216. DOI: 10.3390/ijms20092216
  3. Icochea E, González R, Castro-Sanguinetti G, Maturrano L, Alzamora L, Sesti L, Chacón J, More-Bayona J. Genetic analysis of infectious bronchitis virus S1 gene reveals novel amino acid changes in the GI-16 lineage in Peru. Microorganisms. 2023;11(3):691. DOI: 10.3390/microorganisms11030691
  4. Thai TN, Yoo DS, Jang I, Kwon YK, Kim HR. Dynamics of the emerging genogroup of infectious bursal disease virus infection in broiler farms in South Korea: A nationwide study. Viruses. 2022;14(8):1604. DOI: 10.3390/v14081604
  5. Shirvani E, Paldurai A, Manoharan VK, Varghese BP, Samal SK. A Recombinant Newcastle disease virus (NDV) expressing S protein of infectious bronchitis virus (IBV) protects chickens against IBV and NDV. Sci Rep. 2020;10(1):762. DOI: 10.1038/s41598-018-30356-2
  6. Ulkarni AB, Resurreccion RS. Genotyping of newly isolated infectious bronchitis virus isolates from northeastern Georgia. Avian Dis Digest. 2010;5(4):e3-4. DOI: 10.1637/9543-935810-digest.1
  7. Gu K, Song Z, Ma P, Liao Z, Yang M, Zhou C, Li C, Zhao Y, Li H, Yang X, Lei C, Wang H. A novel nanobody-horseradish peroxidase fusion based-competitive ELISA to rapidly detect avian corona-virus- infectious bronchitis virus antibody in chicken serum. Int J Mol Sci. 2022;23(14):7589. DOI: 10.3390/ijms23147589
  8. Bóna M, Kiss I, Dénes L, Szilasi A, Mándoki M. Tissue tropism of H9N2 low-pathogenic avian influenza virus in broiler chickens by immunohistochemistry. Animals. 2023;13(6):1052. DOI: 10.3390/ani13061052
  9. Ma H, Shao Y, Sun C, Han Z, Liu X, Guo H, Liu X, Kong X, Liu S. Genetic diversity of avian infectious bronchitis coronavirus in recent years in China. Avian Dis Digest. 2012;7(1):e6-7. DOI: 10.1637/10000-980411-digest.1
  10. Lin SY, Chen HW. Infectious bronchitis virus variants: Molecular analysis and pathogenicity investigation. Int J Mol Sci. 2017;18(10):2030. DOI: 10.3390/ijms18102030
  11. Muhsen H, Alaraji F, Alhatami AO, khudhair YI. Real time PCR detection, sequencing, and phylogenetic tree analysis of Newcastle diseases virus isolated from an outbreak in layer flocks in Baghdad capital, Iraq. Indian J Public Health Res Dev. 2019;10(8):2077. DOI: 10.5958/0976-5506.2019.02162.4
  12. Srivastava S, Upadhyay DJ, Srivastava A. Next-generation molecular diagnostics development by CRISPR/Cas tool: Rapid detection and surveillance of viral disease outbreaks. Front Mol BioSci. 2020;23(7):582499. DOI: 10.3389/fmolb.2020.582499
  13. Al-Jameel W, Al-Mahmood SS. Similarities and differences of COVID-19 and avian infectious bronchitis from molecular pathologist and poultry specialist view point. Iraqi J Vet Sci. 2020;34(2):223-31. DOI: 10.33899/ijvs.2020.126984.1426
  14. Raquib A, Uddin A, Nurozzaman SM, Uddin MM, Ahsan G, Rahman MM, Rahman MM. Seroprevalence of Mycoplasma gallisepticum infection in layer chickens of Bangladesh. Iraqi J Vet Sci. 2022;36(1):9- 13. DOI: 10.33899/ijvs.2020.127511.1506
  15. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT- PCR. Euro Surveill. 2020;25(3):2000045. DOI: 10.2807/1560- 7917.es.2020.25.3.2000045
  16. Palaz F, Kalkan AK, Can O, Demir AN, Tozluyurt A, Ozcan A, Ozsoz M. CRISPR-Cas13 system as a promising and versatile tool for cancer diagnosis, therapy, and research. ACS Synth Biol. 2021;10(6):1245-67. DOI: 10.1021/acssynbio.1c00107
  17. Xiang X, Qian K, Zhang Z, Lin F, Xie Y, Liu Y, Yang Z. CRISPR-Cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J Drug Target. 2020;28(7-8):727-31. DOI: 10.1080/1061186x.2020.1769637
  18. Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA. 2020;26(7):771-83. DOI: 10.1261/rna.076232.120
  19. Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, Garcia KF. Field-deployable viral diagnostics using CRISPR-Cas13. Sci. 2018;360(6387):444-8. DOI: 10.1126/science.aas8836
  20. Shariq M, Khan MF, Raj R, Ahsan N, Singh R, Kumar P. CRISPR-based diagnostic approaches: Implications for rapid management of future pandemics (Review). Mol Med Rep. 2023;27(6):118. DOI: 10.3892/mmr.2023.13005
  21. Huang YY, Zhang XY, Zhu P, Ji L. Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications. World J Clin Cases. 2022;10(18):5934-5945. DOI: 10.12998/wjcc.v10.i18.5934
  22. Hillary VE, Ceasar SA. A Review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 2023;65(3):311-325. DOI: 10.1007/s12033-022-00567-0
  23. Compton SR. PCR and RT-PCR in the diagnosis of laboratory animal infections and in health monitoring. J Am Assoc Lab Anim Sci. 2020;59(5):458-68. DOI: 10.30802/aalas-jaalas-20-000008
  24. Zhang X. Development of CRISPR-mediated nucleic acid detection technologies and their applications in the livestock industry. Genes. 2022;13(11):2007. DOI: 10.3390/genes13112007
  25. Chakraborty J, Chaudhary AA, Khan SU, Rudayni HA, Rahaman SM, Sarkar H. CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS Omega. 2022;7(44):39562-39573. DOI: 10.1021/acsomega.2c04513
  26. Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev Nephrol. 2023;19(1):9-22. DOI: 10.1038/s41581-022-00636- 2
  27. Vainionpää R, Leinikki P. Diagnostic techniques: Serological and molecular approaches. In: Mahy BJ, Van Regenmortel MV, editors. Encyclopaedia of virology. USA: Academic Press; 2008. 29-37 p. DOI: 10.1016/b978-012374410-4.00585-9
  28. Park HM, Park Y, Berani U, Bang E, Vankerschaver J, Van Messem A, De Neve W, Shim H. In silico optimization of RNA-protein interactions for CRISPR-Cas13-based antimicrobials. Biol Direct. 2022;17(1):27. DOI: 10.1186/s13062-022-00339-5
  29. Zhou Q, Chen Y, Wang R, Jia F, He F, Yuan F. Advances of CRISPR- Cas13 system in COVID-19 diagnosis and treatment. Genes Dis. 2022. DOI: 10.1016/j.gendis.2022.11.016
  30. Gao H, Shang Z, Chan SY, Ma D. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ Sci B. 2022;23(11):881-898. DOI: 10.1631/jzus.B2200068
  31. Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Front Microbiol. 2023;14:1076947. DOI: 10.3389/fmicb.2023.1076947
  32. Zhao L, Qiu M, Li X, Yang J, Li J. CRISPR-Cas13a system: A novel tool for molecular diagnostics. Front Microbiol. 2022;13:1060947. DOI: 10.3389/fmicb.2022.1060947
  33. Isa RH, Abdo JM, Al-Barzinji YM. Genotyping of avian infectious bronchitis virus in broiler farms in Duhok province, north of Iraq. Iraqi J Vet Sci. 2022;36(1):171-5. DOI: 10.33899/ijvs.2021.129635.1670
  34. Al-Jameel W, Al-Mahmood SS. Similarities and differences of COVID-19 and avian infectious bronchitis from molecular pathologist and poultry specialist view point. Iraqi J Vet Sci. 2020;34(2):223-31. DOI: 10.33899/ijvs.2020.126984.1426
  35. Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: An updated review. Poult Sci. 2023;102(5):102553. DOI: 10.1016/j.psj.2023.102553
  36. Zhao J, Zhao Y, Zhang G. Key aspects of coronavirus avian infectious bronchitis virus. Pathogens. 2023;12(5):698. DOI: 10.3390/pathogens12050698
  37. Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MA, Selim S, Saad AM, El-Saadony MT. Common viral and bacterial avian respiratory infections: An updated review. Poult Sci. 2023;102(5):102553. DOI: 10.1016/j.psj.2023.102553
  38. Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 2018;23(5):374-8. DOI: 10.1016/j.tplants.2018.03.003
  39. Bot JF, van der Oost J, Geijsen N. The double life of CRISPR-Cas13. Curr Opin Biotechnol. 2022;78:102789. DOI: 10.1016/j.copbio.2022.102789
  40. Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep. 2022;49(12):11301-11311. DOI: 10.1007/s11033-022-07752-z
  41. Abbas G, Yu J, Li G. Novel and alternative therapeutic strategies for controlling avian viral infectious diseases: Focus on infectious bronchitis and avian influenza. Front Vet Sci. 2022;9:933274. DOI: 10.3389/fvets.2022.933274