Academia.eduAcademia.edu

Outline

Interactive physically-based sound simulation

2010

Abstract
sparkles

AI

The dissertation focuses on the development of interactive, physically-based sound simulation techniques for real-time applications in immersive virtual environments. It addresses two main sub-problems: sound synthesis, which generates audible sounds produced by object interactions, and sound propagation, which models how sounds travel in a given environment. Key contributions include novel synthesis methods that efficiently simulate hundreds of sound sources and an advanced acoustic simulator, ARD, that significantly enhances computational efficiency and memory usage, enabling realistic rendering of complex scenes.

References (120)

  1. Domain decomposition method. http://www.ddm.org. 60
  2. The havok physics engine. http://www.havok.com/. 25
  3. The nvidia physx physics engine. http://www.nvidia.com/object/physx new.html. 25
  4. The open dynamics engine. http://www.ode.org/. 25
  5. Soundscapes in half-life 2, valve corporation. http://developer.valvesoftware.com/wiki/Soundscapes, 2008. 30
  6. J. B. Allen and D. A. Berkley. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am, 65(4):943-950, 1979. 52
  7. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro. Real time modeling of acoustic propagation in complex environments. Proceedings of 7th International Conference on Digital Audio Effects, pages 274-279, 2004. 52
  8. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon tracing for auralization and visualization of sound. In IEEE Visualization 2005, pages 151-158, 2005. 52
  9. Stefan Bilbao. Wave and Scattering Methods for Numerical Simulation. Wiley, July 2004. 58
  10. J. Blauert. An introduction to binaural technology. In R. Gilkey and T. R. An- derson, editors, Binaural and Spatial Hearing in Real and Virtual Environments. Lawrence Erlbaum, USA, 1997. 11, 139
  11. Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle V. Delmon, and Doug James. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans- actions on Graphics (SIGGRAPH Conference Proceedings), 27(3), 2008. 47
  12. D. Botteldooren. Acoustical finite-difference time-domain simulation in a quasi- cartesian grid. The Journal of the Acoustical Society of America, 95(5):2313-2319, 1994. 58
  13. D. Botteldooren. Finite-difference time-domain simulation of low-frequency room acoustic problems. Acoustical Society of America Journal, 98:3302-3308, Decem- ber 1995. 58
  14. John P. Boyd. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Publications, 2 revised edition, December 2001. 60
  15. Paul Calamia. Advances in Edge-Diffraction Modeling for Virtual-Acoustic Simu- lations. PhD thesis, Princeton University, June 2009. 36, 52, 53, 62
  16. Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. In SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers, pages 1-10, New York, NY, USA, 2009. ACM. 48
  17. A. Chaigne and V. Doutaut. Numerical simulations of xylophones. i. time domain modeling of the vibrating bars. J. Acoust. Soc. Am., 101(1):539-557, 1997. 26, 45, 86
  18. Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren, and Dinesh Manocha. Ad-frustum: Adaptive frustum tracing for interactive sound propaga- tion. IEEE Transactions on Visualization and Computer Graphics, 14(6):1707- 1722, 2008. 36, 52, 62
  19. A. Cheng and D. Cheng. Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements, 29(3):268-302, March 2005. 56
  20. J. Y. Chung, J.W.S Liu, and K. J. Lin. Scheduling real-time, periodic jobs using imprecise results. In Proc. IEEE RTS, 1987. 47
  21. Perry R. Cook. Real Sound Synthesis for Interactive Applications (Book & CD- ROM). AK Peters, Ltd., 1st edition, 2002. 45
  22. Carlos A. de Moura. Parallel numerical methods for differential equations -a survey. 59, 100
  23. Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Real-time ren- dering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graph., 22(3):732-740, July 2003. 48
  24. Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. Computer Graphics Forum (Proc. EUROGRAPHICS 2004), 23(3):539-546, 2004. 48
  25. Jack Dongarra. Performance of various computers using standard linear equa- tions software. Technical report, Electrical Engineering and Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301, 2008. 73
  26. Durlach. Virtual reality scientific and technological challenges. Technical report, National Research Council, 1995. 14
  27. M. David Egan. Architectural Acoustics (J. Ross Publishing Classics). J. Ross Publishing, January 2007. 4, 49
  28. M. Emerit, J. Faure, A. Guerin, R. Nicol, G. Pallone, P. Philippe, and D. Virette. Efficient binaural filtering in QMF domain for BRIR. In AES 122th Convention, May 2007. 65
  29. Thomas Ertl, Ken Joy, Beatriz S. Editors, E. Deines, F. Michel, M. Bertram, H. Hagen, and G. M. Nielson. Visualizing the phonon map. In IEEE-VGTC Symposium on Visualization, 2006. 52
  30. J. L. Florens and C. Cadoz. The physical model: modeling and simulating the instrumental universe. In G. D. Poli, A. Piccialli, and C. Roads, editors, Repre- senations of Musical Signals, pages 227-268. MIT Press, Cambridge, MA, USA, 1991. 45
  31. H. Fouad, J. Ballas, and J. Hahn. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. In Proc. Int. Conf. Auditory Display, 1997. 47
  32. M. Frigo and S. G. Johnson. The design and implementation of fftw3. Proc. IEEE, 93(2):216-231, 2005. 95, 114
  33. Thomas Funkhouser, Nicolas Tsingos, Ingrid Carlbom, Gary Elko, Mohan Sondhi, James E. West, Gopal Pingali, Patrick Min, and Addy Ngan. A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical So- ciety of America, 115(2):739-756, 2004. 36, 52, 62
  34. W. G. Gardner. Reverberation algorithms. In M. Kahrs and K. Brandenburg, editors, Applications of Digital Signal Processing to Audio and Acoustics (The Springer International Series in Engineering and Computer Science), pages 85- 131.
  35. Springer, 1 edition, 1998. 64, 125, 129
  36. Carolyn Gordon, David L. Webb, and Scott Wolpert. One cannot hear the shape of a drum. Bulletin of the American Mathematical Society (N.S.), 27(1):134-138, 1992. 11
  37. Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. High performance discrete fourier transforms on graphics processors. In SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1-12, Piscataway, NJ, USA, 2008. IEEE Press. 32, 113
  38. Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Nonconvex rigid bodies with stacking. ACM Trans. Graph., 22(3):871-878, July 2003. 81
  39. Nail A. Gumerov and Ramani Duraiswami. Fast multipole methods on graphics processors. J. Comput. Phys., 227(18):8290-8313, September 2008. 56, 57
  40. Nail A. Gumerov and Ramani Duraiswami. A broadband fast multipole acceler- ated boundary element method for the three dimensional helmholtz equation. The Journal of the Acoustical Society of America, 125(1):191-205, 2009. 56
  41. Tor Halmrast. Coloration due to reflections. further investigations. In Interna- tional Congress on Acoustics, September 2007. 124
  42. W. M. Hartmann and A. Wittenberg. On the externalization of sound images. The Journal of the Acoustical Society of America, 99(6):3678-3688, June 1996. 139
  43. Murray Hodgson and Eva M. Nosal. Experimental evaluation of radiosity for room sound-field prediction. The Journal of the Acoustical Society of America, 120(2):808-819, 2006. 52
  44. Doug L. James, Jernej Barbic, and Dinesh K. Pai. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics, 25(3):987-995, July 2006. 63
  45. Walt Jesteadt, Craig C. Wier, and David M. Green. Intensity discrimination as a function of frequency and sensation level. The Journal of the Acoustical Society of America, 61(1):169-177, 1977. 147
  46. Matti Karjalainen and Cumhur Erkut. Digital waveguides versus finite difference structures: equivalence and mixed modeling. EURASIP J. Appl. Signal Process., 2004(1):978-989, January 2004. 55, 57, 58
  47. Young J. Kim, Ming C. Lin, and Dinesh Manocha. Deep: Dual-space expansion for estimating penetration depth between convex polytopes. In IEEE International Conference on Robotics and Automation, May 2002. 81
  48. Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, and James V. Sanders. Fundamentals of acoustics. Wiley, 4 edition, December 2000. 29, 49
  49. Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson. Auralization -an overview. JAES, 41:861-875, 1993. 55
  50. K. Kowalczyk and M. van Walstijn. Room acoustics simulation using 3-d com- pact explicit fdtd schemes. IEEE Transactions on Audio, Speech and Language Processing, 2010. 58, 103, 119
  51. A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration, 8(1):118- 125, July 1968. 52
  52. Heinri Kuttruff. Room Acoustics. Taylor & Francis, October 2000. 31, 35, 37, 49, 94, 112, 122, 124, 127, 129, 134
  53. Tobias Lentz, Dirk Schröder, Michael Vorländer, and Ingo Assenmacher. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process., 2007(1):187, 2007. 61
  54. Ruth Y. Litovsky, Steven H. Colburn, William A. Yost, and Sandra J. Guz- man. The precedence effect. The Journal of the Acoustical Society of America, 106(4):1633-1654, 1999. 123
  55. Qing H. Liu. The pstd algorithm: A time-domain method combining the pseu- dospectral technique and perfectly matched layers. The Journal of the Acoustical Society of America, 101(5):3182, 1997. 60, 93
  56. T. Lokki. Physically-based Auralization. PhD thesis, Helsinki University of Tech- nology, 2002. 61
  57. C. Masterson, G. Kearney, and F. Boland. Acoustic impulse response interpolation for multichannel systems using dynamic time warping. In 35th AES Conference on Audio for Games, 2009. 65
  58. Ravish Mehra, Nikunj Raghuvanshi, Ming Lin, and Dinesh Manocha. Efficient gpu-based solver for acoustic wave equation. Technical report, Department of Computer Science, UNC Chapel Hill, USA, 2010. 101, 120
  59. P. Min and T. Funkhouser. Priority-driven acoustic modeling for virtual environ- ments. Computer Graphics Forum, pages 179-188, September 2000. 64
  60. Brian Mirtich and John Canny. Impulse-based simulation of rigid bodies. In I3D '95: Proceedings of the 1995 symposium on Interactive 3D graphics, New York, NY, USA, 1995. ACM. 81
  61. James Moody and Paul Dexter. Concert Lighting, Third Edition: Techniques, Art and Business. Focal Press, 3 edition, September 2009. 1
  62. William Moss, Hengchin Yeh, Jeong-Mo Hong, Ming C. Lin, and Dinesh Manocha. Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans- actions on Graphics (proceedings of SIGGRAPH 2010), 29(3), July 2010. 48
  63. D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley. Acoustic modeling using the digital waveguide mesh. Signal Processing Magazine, IEEE, 24(2):55-66, 2007. 57, 58
  64. James F. O'Brien, Perry R. Cook, and Georg Essl. Synthesizing sounds from physically based motion. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 529-536, New York, NY, USA, 2001. ACM Press. 26, 45
  65. James F. O'Brien, Chen Shen, and Christine M. Gatchalian. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Com- puter Animation, pages 175-181. ACM Press, July 2002. 26, 46, 69, 72
  66. R. Petrausch and S. Rabenstein. Simulation of room acoustics via block-based physical modeling with the functional transformation method. Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on, pages 195- 198, 16-19 Oct. 2005. 60
  67. Jackson Pope, David Creasey, and Alan Chalmers. Realtime room acoustics using ambisonics. In The Proceedings of the AES 16th International Conference on Spa- tial Sound Reproduction, pages 427-435. Audio Engineering Society, April 1999. 64
  68. Alfio Quarteroni and Alberto Valli. Domain Decomposition Methods for Partial Differential Equations (Numerical Mathematics and Scientific Computation). Ox- ford University Press, USA, July 1999. 60
  69. R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Kar- jalainen. Block-based physical modeling for digital sound synthesis. Signal Pro- cessing Magazine, IEEE, 24(2):42-54, 2007. 60
  70. Nikunj Raghuvanshi, Nico Galoppo, and Ming C. Lin. Accelerated wave-based acoustics simulation. In SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling, pages 91-102, New York, NY, USA, 2008. ACM. 33
  71. Nikunj Raghuvanshi, Christian Lauterbach, Anish Chandak, Dinesh Manocha, and Ming C. Lin. Real-time sound synthesis and propagation for games. Commun. ACM, 50(7):66-73, July 2007. 27
  72. Nikunj Raghuvanshi and Ming C. Lin. Interactive sound synthesis for large scale environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 101-108, New York, NY, USA, 2006. ACM Press. 27
  73. Nikunj Raghuvanshi and Ming C. Lin. Physically based sound synthesis for large- scale virtual environments. IEEE Computer Graphics and Applications, 27(1):14- 18, 2007. 27
  74. Nikunj Raghuvanshi, Brandon Lloyd, Naga K. Govindaraju, and Ming C. Lin. Efficient numerical acoustic simulation on graphics processors using adaptive rect- angular decomposition. In EAA Symposium on Auralization, June 2009. 33
  75. Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Transactions on Visualization and Computer Graphics, 15(5):789-801, 2009. 33
  76. Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming C. Lin, and Naga K. Govindaraju. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Transactions on Graphics (proceedings of SIGGRAPH 2010), 29(3), July 2010. 41
  77. Zhimin Ren, Hengchin Yeh, and Ming C. Lin. Synthesizing contact sounds between textured models. In 2010 IEEE Virtual Reality Conference (VR), pages 139-146. IEEE, March 2010. 48
  78. Y. S. Rickard, N. K. Georgieva, and Wei-Ping Huang. Application and optimiza- tion of pml abc for the 3-d wave equation in the time domain. Antennas and Propagation, IEEE Transactions on, 51(2):286-295, 2003. 103
  79. J. H. Rindel. The use of computer modeling in room acoustics. Journal of Vibro- engineering, 3(4):219-224, 2000. 52
  80. D. Rizos and S. Zhou. An advanced direct time domain bem for 3-d wave propa- gation in acoustic media. Journal of Sound and Vibration, 293(1-2):196-212, May 2006. 56
  81. Ton Roosendaal. The blender foundation. http://www.blender.org. 49
  82. H. Sabine. Room acoustics. Audio, Transactions of the IRE Professional Group on, 1(4):4-12, 1953. 49
  83. S. Sakamoto, T. Yokota, and H. Tachibana. Numerical sound field analysis in halls using the finite difference time domain method. In RADS 2004, Awaji, Japan, 2004. 58
  84. Shinichi Sakamoto, Hiroshi Nagatomo, Ayumi Ushiyama, and Hideki Tachibana. Calculation of impulse responses and acoustic parameters in a hall by the finite- difference time-domain method. Acoustical Science and Technology, 29(4), 2008. 108
  85. Shinichi Sakamoto, Takuma Seimiya, and Hideki Tachibana. Visualization of sound reflection and diffraction using finite difference time domain method. Acous- tical Science and Technology, 23(1):34-39, 2002. 58
  86. Shinichi Sakamoto, Ayumi Ushiyama, and Hiroshi Nagatomo. Numerical analysis of sound propagation in rooms using the finite difference time domain method. The Journal of the Acoustical Society of America, 120(5):3008, 2006. 58
  87. L. Savioja. Modeling Techniques for Virtual Acoustics. Doctoral thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Labora- tory, Report TML-A3, 1999. 51, 57, 61
  88. L. Savioja, J. Backman, A. Järvinen, and T. Takala. Waveguide mesh method for low-frequency simulation of room acoustics. In 15th International Congress on Acoustics (ICA'95), volume 2, pages 637-640, Trondheim, Norway, June 1995. 57
  89. L. Savioja, T. Rinne, and T. Takala. Simulation of room acoustics with a 3-d finite difference mesh. In Proceedings of the International Computer Music Conference, pages 463-466, 1994. 58
  90. L. Savioja and V. Valimaki. Interpolated 3-d digital waveguide mesh with fre- quency warping. In ICASSP '01: Proceedings of the Acoustics, Speech, and Signal Processing, 2001. on IEEE International Conference, pages 3345-3348, Washing- ton, DC, USA, 2001. IEEE Computer Society. 58
  91. Lauri Savioja. Real-time 3d finite-difference time-domain simulation of mid- frequency room acoustics. In 13th International Conference on Digital Audio Effects (DAFx-10), September 2010. 58, 59, 103, 119
  92. Lauri Savioja, Jyri Huopaniemi, Tapio Lokki, and Ritta Väänänen. Creating in- teractive virtual acoustic environments. Journal of the Audio Engineering Society (JAES), 47(9):675-705, September 1999. 61
  93. A. Sek and B. C. Moore. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am., 97(4):2479-2486, April 1995. 47, 73
  94. K. L. Shlager and J. B. Schneider. A selective survey of the finite-difference time- domain literature. Antennas and Propagation Magazine, IEEE, 37(4):39-57, 1995. 58
  95. Samuel Siltanen. Geometry reduction in room acoustics modeling. Master's thesis, Helsinki University of Technology, 2005. 36, 51, 106
  96. Julius O. Smith. Physical Audio Signal Processing. http://ccrma.stanford.edu/˜jos/pasp, 2010. 45
  97. Efstathios Stavrakis, Nicolas Tsingos, and Paul Calamia. Topological sound prop- agation with reverberation graphs. Acta Acustica/Acustica -the Journal of the European Acoustics Association (EAA), 2008. 65, 138
  98. C. Stoelinga and A. Chaigne. Time-domain modeling and simulation of rolling objects. Acustica united with Acta Acustica, 93(2):290-304, 2007. 48
  99. U. Peter Svensson, Paul Calamia, and Shinsuke Nakanishi. Frequency-domain edge diffraction for finite and infinite edges. In Acta Acustica/Acustica 95, pages 568-572, 2009. 135
  100. Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The Finite- Difference Time-Domain Method, Third Edition. Artech House Publishers, 3 edi- tion, June 2005. 44, 58, 60, 92, 108
  101. Tapio Takala and James Hahn. Sound rendering. SIGGRAPH Comput. Graph., 26(2):211-220, July 1992. 13, 15
  102. Micah T. Taylor, Anish Chandak, Lakulish Antani, and Dinesh Manocha. Re- sound: interactive sound rendering for dynamic virtual environments. In MM '09: Proceedings of the seventeen ACM international conference on Multimedia, pages 271-280, New York, NY, USA, 2009. ACM. 52, 62
  103. Lonny L. Thompson. A review of finite-element methods for time-harmonic acous- tics. The Journal of the Acoustical Society of America, 119(3):1315-1330, 2006. 55
  104. Rendell R. Torres, U. Peter Svensson, and Mendel Kleiner. Computation of edge diffraction for more accurate room acoustics auralization. The Journal of the Acoustical Society of America, 109(2):600-610, 2001. 62
  105. Andrea Toselli and Olof B. Widlund. Domain decomposition methods-algorithms and theory. Springer series in computational mathematics, 34. Springer, 1 edition, November 2005. 60
  106. Nicolas Tsingos. Simulating High Quality Dynamic Virtual Sound Fields For In- teractive Graphics Applications. PhD thesis, Universite Joseph Fourier Grenoble I, December 1998. 52
  107. Nicolas Tsingos. Pre-computing geometry-based reverberation effects for games. In 35th AES Conference on Audio for Games, 2009. 64, 65
  108. Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepiane. Instant sound scattering. In Rendering Techniques (Proceedings of the Eurograph- ics Symposium on Rendering), 2007. 63
  109. Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom. Model- ing acoustics in virtual environments using the uniform theory of diffraction. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 545-552, New York, NY, USA, 2001. ACM. 52, 53
  110. K. van den Doel and D. K. Pai. Synthesis of shape dependent sounds with physical modeling. In Proceedings of the International Conference on Auditory Displays, 1996. 46
  111. K. van den Doel and D. K. Pai. The sounds of physical shapes. Presence, 7(4):382- 395, 1998. 46
  112. Kees van den Doel. Physically based models for liquid sounds. ACM Trans. Appl. Percept., 2(4):534-546, October 2005. 48
  113. Kees van den Doel, Dave Knott, and Dinesh K. Pai. Interactive simulation of complex audiovisual scenes. Presence: Teleoper. Virtual Environ., 13(1):99-111, 2004. 47
  114. Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. Foleyautomatic: physically- based sound effects for interactive simulation and animation. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 537-544, New York, NY, USA, 2001. ACM Press. 46
  115. S. Van Duyne and J. O. Smith. The 2-d digital waveguide mesh. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages 177-180, 1993. 57
  116. Michael Vorländer. Auralization: Fundamentals of Acoustics, Modelling, Simula- tion, Algorithms and Acoustic Virtual Reality (RWTHedition). Springer, 1 edition, November 2007. 61
  117. Kane Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, May 1966. 58, 90
  118. Changxi Zheng and Doug L. James. Harmonic fluids. In SIGGRAPH '09: ACM SIGGRAPH 2009 papers, pages 1-12, New York, NY, USA, 2009. ACM. 48
  119. Changxi Zheng and Doug L. James. Fracture sound with precomputed sound- banks. ACM Transactions on Graphics (SIGGRAPH 2010), 29(3), July 2010. 48
  120. Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and Models (Springer Series in Information Sciences) (v. 22). Springer, 2nd updated ed. edition, April 1999. 73